編集後記
水化学部会は昨年発足後、2年目に入り、サマーセミナなど各種行事も予定通り進んでいます。今後の部会運営等については、他部会との連携など新たな動きも出てきています。 このような中、遅まきながら、部会報の第二報をお届けいたします。本部会の特徴や位置づけを再確認いただける内容ではないかと考えています。
夏本番で暑い日が続いていますが、皆様がたにはお体に気をつけられ、各職場でご活躍されますことを祈念いたします。
(日立GEニュークリア・エナジー 布施記)
水化学部会は昨年発足後、2年目に入り、サマーセミナなど各種行事も予定通り進んでいます。今後の部会運営等については、他部会との連携など新たな動きも出てきています。 このような中、遅まきながら、部会報の第二報をお届けいたします。本部会の特徴や位置づけを再確認いただける内容ではないかと考えています。
夏本番で暑い日が続いていますが、皆様がたにはお体に気をつけられ、各職場でご活躍されますことを祈念いたします。
(日立GEニュークリア・エナジー 布施記)
「2008年 水化学サマーセミナー in 福井」報告
平成19年春に発足した水化学部会では初めてとなるサマーセミナーが、2008年7月15日~17日に福井市のフェニックスプラザにおいて開催された。100名を超す参加者が、14件の講演と16件のポスター発表を聞き、活発な質疑を行い、真剣にパネル討論に加わり、また交流会と懇親会で楽しい一時を過ごし、有意義な時間を共有できた。以下では、本セミナーの概要をご報告する。なお、本報告の末尾にセミナー参加者の集合写真を添付する。
本セミナーの予稿集の表紙には、「第5回水化学サマーセミナー」と記されている。これは、水化学部会の前身として石榑顕吉先生のご指導の下20年以上に亘る活動を行った水化学研究専門部会において、既に4回のサマーセミナーが開催されたためである。水化学サマーセミナーでは毎回基調テーマを掲げて講演を依頼している。今回の基調テーマは、「原子力発電所における電気化学技術適用の進展」及び「原子力発電所における水化学がかかわる改善の取り組み(Good Practice他)」という2つのテーマであった。その趣旨は、開催案内に以下のように述べられている。
原子力発電所の機器等構造材料の腐食事象を理解するためには材料と環境の相互作用である腐食反応機構の理解が欠かせない。本セミナーのテーマの1つとして、水化学分野における電気化学の適用事例として、電気化学手法を基にした測定法や電気化学に基づく腐食等のメカニズムに関する研究事例等を紹介する。また、もう1つのテーマとして、発電事業者、研究者、及び、メーカー他の水化学がかかわる改善の取り組み(Good Practice他)について、例えば、被ばく低減、応力腐食割れ(SCC)や流れ加速腐食(FAC)などの高経年化事象抑制、プラント性能改善、経済性向上など幅広い分野での事例を紹介し、関係者の間での相互理解を深める。この両基調テーマの元、柴田俊夫先生による招待講演(講演時間40分)に続き12件の一般講演(同各25分)等が行われた。
本セミナーの開催場所であるフェニックスプラザは、JR福井駅からは1.8kmと、連日最高気温が30℃を超えたセミナー期間に徒歩では厳しい距離であったが、路面電車(福井鉄道福武線)の走る広い道路に面した立派な施設であり、その大会議室が会場となった。本セミナー開催では、この会場の準備他多くを三菱重工株式会社原子力事業本部原子力技術センター荘田泰彦殿他の多数の方々にお世話になりましたことを感謝いたします。
2.1 第1日目(7月15日)
本セミナーは、内田俊介部会長(JAEA)の開催挨拶により13:45に始まり、午後のセッション1は<電気化学計測や電気化学に基づく腐食等のメカニズムに関する研究>と題して、以下の4件の講演と質疑が行われた。座長は、實重宏明殿(東電)が務められた。
1-1 招待講演「マクロセル腐食とミクロセル腐食~高温水中炭素鋼腐食機構に関連して~」
福井工業大学 原子力技術応用工学科教授 柴田 俊夫先生
1-2 「PWR2次系での腐食環境および配管減肉速度の評価手法」
日本原子力研究開発機 原子力基礎工学研究部門 内田 俊介殿
1-3 「応力腐食割れの電気化学的側面 – 臨界電位を中心に」
IHIテクノソリューションズ 明石 正恒殿
1-4 「ジルコニウム合金被覆管の腐食機構に関する電気化学的研究」
三菱マテリアル(株) 非鉄材料技術研究所 村井 琢弥殿
上記の講演の後、ポスターセッションが17:00-18:00に会場である大会議室の後のスペースにおいて開かれた。ここでは、電力会社、メーカー、大学それに各研究機関の若手を中心とした研究者、技術者から全体で16件のテーマの発表があった。内容は、腐食環境に係わる基礎データの評価から実プラントでの水化学関連技術の運用実績とその改善に結びつくものまで広範囲にわたり、各テーマともセミナー参加者と熱心な議論が行われた。
2.2 第2日目(7月16日)
セミナー2日目は朝8:30に始まり、午前のセッション2は<水化学がかかわる改善の取り組み(Good Practice他);その1>と題して、以下の5件の講演と質疑が行われた。座長は、塚本雅昭殿(関電)が務められた。
2-1 「泊発電所における蒸気発生器2次側洗浄の実績と効果」
北海道電力株式会社 笹田 直伸殿
2-2 「敦賀2号機における亜鉛注入の実績と効果」
日本原子力発電株式会社 市毛 秀明
2-3 「PWR燃料被覆管クラッド付着影響因子の明確化に係わる研究動向」
電力中央研究所 河村 浩孝殿
2-4 「復水脱塩装置向けアニオン交換樹脂の開発及び実機適用例」
オルガノ株式会社 大橋 伸一殿
2-5 「PWRプラント2次系における配管減肉事象のデータ分析」
三菱重工業株式会社 高砂製作所 山上 勝彦殿
昼食後の午後13:15からのセッション3では<水化学がかかわる改善の取り組み(Good Practice他);その2>と題して、以下の4件の講演と質疑が行われた。座長は、乙葉啓一殿(原電)が務められた。(13:15-16:05)
3-1 「東北電力BWRプラントにおける極低Fe・高Niコントロールの経験と最適化」
東北電力株式会社 齋藤 実殿
3-2 「BWRにおける水化学によるSCC抑制への取り組み」
株式会社東芝 山本 誠二殿
3-3 「水化学をベースとしたBWRプラント保全技術の展開」
日立GEニュークリア・エナジー(株) 会沢 元浩殿
3-4 「発電所分析化学管理標準について」
丸紅ユーテイリテイサービス 佐藤 義雄殿
2.3 パネル討論
上記セッションの後、パネル討論が1時間の予定で、テーマを「水化学ロードマップについて」として行われた。司会である勝村庸介先生(東京大学)による本パネル討論の趣旨説明の後、まずパネリストとして瀧口英樹殿(原電)、河村浩孝殿(電中研)、荘田泰彦殿(三菱重工)から、それぞれ実機に係わる事業者、研究機関、メーカーの観点を主として水化学およびそのロードマップに関する意見を述べられた。
勝村先生からは、水化学ロードマップ作成の経緯、ロードマップフォローアップ(RMFU)小委員会(勝村先生主査)の活動状況、パネルディスカッションの進め方が話された。
瀧口殿からは、発電プラントにおける水化学は予防保全技術として重要であり、その観点からは(1)炉内現象のメカニズムの把握と炉内環境の精確な把握に基づく予測・対策技術の開発、(2)水化学技術の有効性の検証と維持管理への反映、(3)水化学を支える人的基盤、施設基盤、情報基盤の3つの重要性が述べられた。また、水化学ロードマップ及びそのフォローアップは、(1)研究開発マネージメント、(2)研究開発者に対する重要技術情報の提供、(3)国民理解の増進に役立つべきとの意見であった。
河村殿からは、瀧口殿の指摘された水化学を支える基盤の整備について、特に施設基盤に関して照射試験及び実機での計測の重要性が強調され、それらは産官学が協同して取り組むべき課題であると述べられた。また、照射下試験による炉内現象のモデル等の検証の必要性と現状の問題点、克服すべき課題及びそれらの水化学ロードマップ上での位置づけについて述べられた。
荘田殿からは、水化学に基づく的確な予防保全のためには、実機環境下で起こっている腐食、付着等の現象の的確な理解、関係するパラメータ毎の寄与の定量化とそれらの相乗作用の理解などが重要であること等が述べられた。
これらの意見に関して、活発な質疑討論が行われ、例えば次のような意見が出された。
・ 予防保全はうまくいってあたり前というところがあり、どのようにその効果を見せてゆくのかを考える必要があり、例えばPerformance Indicator(安全実績指標)を活用する方向等がある。
・ 現在の受託事業による研究のやり方は、大学の本来の役割とずれている部分があり、学生の関与や予算の使い方に難しい点がある。
・ 大学の観点としては、研究が学問として位置づけられること、体系化が重要であり、学生が魅力的に思い夢を持てることが重要である。
・ ロードマップに縛られ自由度を失わないようにするべき。
・ 水化学は高経年化対応のキーポイントである。実機・ラボでの腐食電位(ECP)計測の技術向上、寿命評価に必要なSCC発生に関する研究などを進めるべきである。
2.4 第3日目(7月17日)
最終日は本セミナーの恒例となった、長尾博之殿(元東芝)による「水の常識・非常識」と題する講演がセッション4として7:30~8:00に行われた。座長は、山崎健治殿(東芝)が務められた。毎回楽しく興味深いお話であるが、今回は「磁気水のお話し」がテーマであった。講演は、磁気水(またの名も磁気処理水他沢山ある)の歴史(なんと13世紀からあったとか)、配管のスケール付着防止への利用、抗菌作用などに及んだが、特に長尾殿が自宅のお風呂に導入されたシステムとその効用のお話は大変説得力のある楽しいものであった。また、次回にもユニークなお話により、「水」に対する私たちの視野を拡げていただきたいと思った。
長尾殿のご講演の後、午前8時に本サマーセミナーの閉会の辞が、内田部会長より述べられた。その後,希望者は下記の見学会(テクニカルツアー)へ参加された。
見学会は、以下の予定で実施された。主な見学場所は、若狭湾エネルギー研究センターおよび高速増殖炉もんじゅ建設所の2ヶ所であった。
08:30 福井フェニックスプラザ前出発
10:00 若狭湾エネルギー研究センター到着
10:00~11:30 若狭湾エネルギー研究センター見学
11:30 若狭湾エネルギー研究センター出発
12:30 日本原子力研究開発機構 高速増殖炉もんじゅ建設所到着
12:30~13:00 昼食(もんじゅ建設所にてお弁当)
13:00~15:00 もんじゅ建設所見学
15:00 日本原子力研究開発機構 高速増殖炉もんじゅ建設所出発
16:00 敦賀駅到着・解散
充実した多くの講演の後には、水化学への関心を同じくする方々との懇親を深めるというサマーセミナー最大の楽しみがある。今回のセミナーでは、第1日目は「交流会」と称して、フェニックスプラザの小ホールにて参加者全員が10卓程の円卓を囲んで盛大に行われた。第2日目は「懇親会」と称して、有志がやはりフェニックスホール内のレストランに集まり、立食形式で行われた。いずれも18:00頃より2時間程度歓談を中心として行われたが、交流会では、大平 拓殿(原電)の非常に楽しい司会により、福井県にちなんだクイズや利き酒が行われた。利き酒は、水化学サマーセミナーではこれまでも何度か行われたが、毎回予想外の方が隠れた才能を披露されている。今回は、唯一人、数種類の日本酒の銘柄を利き分けた山崎健治殿(東芝)が優勝された。氏は現在水化学部会の副部会長であるので、当部会の将来も芳醇な日本酒のように素晴らしいものとなるであろうと予感された。
今回の基調テーマは、「原子力発電所における電気化学技術適用の進展」及び「原子力発電所における水化学がかかわる改善の取り組み(Good Practice他)」という2つのテーマで開催された。これについて、腐食・電気化学の基礎理論から実機における水化学的課題と対策技術まで、広範な講演を多数いただき、また「水化学ロードマップについて」と題する活発なパネル討論も行われた。このセミナーを通して、新発足した水化学部会が対象とする課題の広がりと役割の重要さが再認識できたと思う。当部会には、2年毎のサマーセミナーの他、年4回程度の定例研究会も開催している。これらの場で集中的な勉強と議論を継続的に行うことより、水化学部会はますます発展すると期待できた。
以上(文責:JAEA塚田)
“水”あれこれ ・・・(1)
長尾 博之
水は原子力と縁が深いだけではなく、極めて身近な存在であるにもかかわらず、実は良く理解されていない物質であるように思われます。この度、広報・編集担当の布施幹事殿から、水化学部会の部会報に「水について何か書け、それもシリーズで」 というご下命があったのを良い機会に、水に関連して面白いなと思ってきたことどもを、そこはかとなく書きつづってみようかと思いはじめました。同好の士がいらっしゃれば是非ご連絡下さい。せっかく与えて頂いたこの場を共用して話を進めるのもまた面白いのではないかと思います。
Ⅰ.はじめに
筆者が初めて発電プラントの“水化学”という分野の仕事に携わるようになってから、既に35年近くも経ってしまいました。この間、水に関しては実にいろいろな経験をさせて頂きましたが、筆者が水化学の世界に入って間もなく気がついたことは、水ほど身近で、単純で、自然で、当たり前の物質は無いというそれまでの考えは大きな間違いで、水はかなり不思議な物質であり、その本質について良く理解されていない面が多々残されているということでした。その後、30年間ほどの水に関する研究の進展は目覚ましく、ミクロな分子レベルの挙動に始まって、極めてマクロな宇宙レベルの水の動きまで多くのことが分かってきましたが、残念なことに、社会一般における水に対する認識は、未だ35年前と大きく変わってはいないようです。とはいえ、筆者個人の認識も、水とはとにかく仲良く付きあっていかなければならないもの、という程度のものですが。
そこで、本稿では、タイトルを『“水”あれこれ 』としましたように、“水化学”以外の“水”に関することなら何でも取り上げて皆様と意見を交換しては如何かと考えておりまして、時には文学的な話題にまで話が及ぶことがあるかもしれません。先ずは、この地球の水の起源について考えてみることから始めたいと思います。この点は、筆者の子供の時からの疑問点の1つでしたので。(なお、以下の部分は、既に日本原子力学会誌に投稿した「軽水炉と水 - 水の常識・非常識」とかなりの部分で重複しています1)。)
Ⅱ.地球の水の起源
地球の表面積の7割は水で覆われていると言われています。まさに“水の惑星”です。ところが、この地球上の水の起源は如何にということになると、ほぼ正しいと思われる理論が定説となったのが、たかだかここ20数年のことにしかすぎません。これは、“地球起源”説、または“地中からの浸みだし”説とでも言うべきものです。これについて以下に少し詳しく述べますが、順序としてこれ以前にあった説にも触れたいです。それは、“水は天から貰い水”説 とでも言うべき説で、30数年前まではこちらの説の方がむしろ有力だったように思われるからです。
この説は、かなりの昔から直感的に唱えられていたようですが、 一時期、学会に圧倒的な影響力を持ったのは、ナチスのヒットラーの擁護を受けたオーストリア人のハンス・ヘルビガー(1860生)に よる説と言われています。ヘルビガーは、1913年に「氷宇宙論」なる大著を出版し、地球の水は、昔、地球の周りを回っていた3個 の氷で覆われた月から降り注いだものであるとしました2)。勿論、現在は“ヘルビガーのオカルト宇宙論”の悪口のもとに、科学的には一顧だにされなくなっています。
次に、日本人による説をご紹介します。1975年の2月に、「灼熱の氷惑星」(原書房)という220頁余りの単行本が出版されまし た3)。著者は、当時、電中研の理事待遇で経済研究所研究室長を務めておられた高橋実氏で、歴とした物理学者です。内容は、“地球の水は多すぎる”という漠とした感想を出発点として、その水の故郷を思考によって訪ねた結果、ある特異な構造と周期を持つ天体の存在を仮定せざるを得ないとしたものです。氏はこれに“天体M”(図1)と命名し、これこそが、地球上にある大部分の水の供給源であり、灼熱の水と氷でできた太陽系の1惑星であるとしました。この天体Mの存在は、単なる想像によるものではなく、氏の専門をベースとした、極めて厳密かつ詳細な宇宙物理学的な理論解析と、膨大な思考実験の結果予言されたところに奇妙に説得力があり、固い内容にも拘わらず当時のベストセラーになったと記憶しています。
この説は、地球上のこの膨大な水は、すべて46億年前の地球形成時から十億年以上をかけて、火山活動に伴って大地の中から‘浸み出し’、それが徐々に蓄積したとするものです4)。まことに分かり易く、当たり前のように思えますが、これを実感として納得するためには、この大宇宙を構成する物質の中で、水は最もありふれた物質の一つであるということを、先ずは認識する必要があると思われます。
大宇宙を構成する元素で量の最も多いのは、勿論“水素”です。2番目がヘリウムで、“酸素”はなんと3番目を占め、水素の1/1,000も存在するようです。他の元素の存在量は、一般に原子量の増加とともに急激に減少し、重金属類に至っては宇宙的にはゴミのような存在でしかありません。この相対的に多量の酸素は、分子状の酸素(O2)としても安定に存在し得ますが、周囲に酸化されやすい物があると、より安定な酸化物に変化します。したがって宇宙的には大部分の酸素は水素の酸化物として、つまりは水(H2O)として存在することになります。その結果、星々をつくる原料となった岩石類の塊や屑が多量の水を含んでいて当然ですし、条件次第では、水だけで出来た星があっても不思議ではありません。身近なところでは、太陽系の外縁惑星である天王星、海王星、冥王星の3惑星は、コアの部分こそは他の惑星と同様に岩石でできているものの、体積の多くを占める所謂マントルの部分は水でできていると考えられています。
問題は、現在ほどの大量の水が地中から供給し得たかどうかということですが、この点については次のように説明されています。溶岩というものは、重量にしておよそ10%もの水を含みうるそうで、例えば、1 km3 の溶岩に含まれる水の体積は最大で0.3 km3 となります。この事から、現在の大陸性地殻の総体積を形成した溶岩からの水の放出量を計算しますと、現海洋の総体積の1.5倍もの水の量になります。つまり地球上の水は、貰い水ではなく身からでた錆ならぬ水というわけです。 1.の仮説にくらべて、あまりにも当たり前の説のように思われますが、これとても一般に定着しつつあるという段階に過ぎず、何時かまた違った説が生まれないとも限りません。その時が楽しみです。
Ⅲ.水の七不思議
水はこの世の中で最もありふれた物質であるとともに“液体の代表”と目されています。勿論、この“代表”という用語の定義にもよりますが、この表現は必ずしも正しいとはいえません。少なくとも科学的にみた水の性質(物性)の多くは、他の液体の物性から予測される値とはかなりかけ離れたものとなっています。つまり、安易に液体の代表とは言えない面をもっているわけです。むしろ、水は“不思議な液体”である、といった方が当たっているかもしれません。
この水が液体の代表とは言い難い性質の中から7つほどを選んで、筆者が勝手に“水の七不思議”と呼んでいるのですが、ここではその中から2つほどを選んで少し詳しく述べてみます。
水が0 ℃ で凍り(融点または氷点)、100 ℃ で沸騰する(沸点)ことは誰でも知っています。これは水の凍る温度をゼロとし、その沸騰する温度との間を100等分する、という温度スケール(摂氏、℃)を“定義”したからそうなっただけで、理屈でも何でもなんでもありません。以下、この温度スケールで話を進めるとして、しからば水に似た他の物質(液体)が0 ℃ 近くで凍り、100 ℃ 近くで沸騰するかというと全くそうはなっていないのです。一般に、化学的に類似の化合物、或いは化学的な分子構造が似た化合物は、その物性(融点、沸点など)もかなり似かよっています。ところが水の場合にはこの原則から大きく逸脱しているのです。つまり、水は液体の代表とは言いにくいわけです。ではどの程度逸脱しているかを、元素の周期表を参考にして見てみましょう。
周期表の中で、同じ族の中の元素は化学的な性質も似ているとされています。水の構成元素の酸素(O)は“16族”に属しますが、この族には他に、硫黄(S)、セレン(Se)、テルル(Te)などの元素が含まれます。これらの元素はすべて2個の水素原子(H)と結合して比較的安定な化合物(水素化物)を作ります。酸素の場合はOH2(またはH2O)、つまり水と言うことになります。これら4種の水素化物の沸点を分子量に対してプロットすると図2が得られます。水以外の化合物の沸点は分子量の増加とともに整然と増加していますが、これは分子量が増えるほど分子の熱運動エネルギーが増えることと関わっていると理解されます。水の沸点は、この関係を単に外挿しただけなら -70 ~ -80 ℃ 位であっても良さそうに見えます。事実はこれとは大違いで、外挿値よりも180 ℃ 近くも高い+100℃で沸騰するわけです。水が如何に特異な物質であるかが分かります。
水のこの特異性が“水素結合”のためであることはさすがにかなりの昔に解明されています5)。つまり、水分子は通常は単独で動き回っているのではなく、複数の水分子が水素結合によってお互いに結びつき合い、見かけの平均分子量が極めて大きな塊(クラスター)となっているため、なかなか沸騰しにくいわけです。水を沸騰蒸発させるには、この水素結合を切るだけの熱エネルギーを与える必要があり、これがたまたま100 ℃ であったというわけです。
沸点以外の水の物性についてもその多くのものが同じく特異な値を示します。例えば、水の融点、密度、蒸発熱、粘度、その他諸々の物性が、全てとは言わないまでも大なり小なり水素結合に起因した特異な値を示します。
2.“すきま”の水の不思議
私どもの身の回りには、いろいろな“すきま”が存在します。この“すきま”の中に入った水は、普通の容器に入れた水とはかなり違った性質を示します。例えば純水よりも蒸発しにくく、また粘度も大きくなっています。最も顕著な違いは、凍りにくさに見られます。図3に、2枚のガラス板で作ったすきまの中の水の氷点を示します。図のカーブから、2枚のガラス板間の距離、言い換えれば、“すきま”の幅が大きくなって数mmを越えると、普通の水のように0 ℃ で凍るようになりますが、逆にこの幅が狭くなるほど、中の水は凍りにくくなることが分かります。“すきま”が0.001mmになると、中の水は -100 ℃ というものすごい低温でも凍りません。これは、ガラス面に接している、或いは近傍の水分子の熱運動が、ガラス面との吸着力によって遅くなるためと思われます。
“すきま”の水に関してはさらに不思議な現象が観測されています。2枚の平らな板を水の中でぴったり合わせると、板を合わせ面に対して垂直に引き離すためには、相当大きな力を必要とすることは誰でも経験的に知っています。この2枚の板を引き剥がすために必要な力は“分離圧”と名付けられていますが、これは“すきま”に入った水の特異な性質に起因するものです。
ペシェルら6) は極めて平滑な2枚の石英板の間を純水で満たしたときの分離圧の温度依存性を測定しました。図4は石英板の間隔が50 nmのときの測定結果ですが、ここで注目すべき特徴は、ちょうど15 ℃ おきに、それぞれ15 ℃,30 ℃,45 ℃,60 ℃ 付近で分離圧が極大値を示していることです。この原因は,水の構造変化によるものと考えられていますが、何故このように著しい変化を示すのか、ということの明快な説明は未だなされてはいません。
明快な説明が無いとはいえ、この分離圧の温度変化が、実は、生命活動に深く関わっているらしいことが、誠に興味深い点であります。つまり、分離圧の極大値をもたらす上記の4つの温度は、生物にとっては好ましくない温度であり、これらの温度の前後で生理現象が不連続に変化することが知られているからです。例えば、人は体温が30 ℃ を切ると意識を失ってしまい、さらに27 ℃ まで下がると凍死してしまいますし、逆に、体温が45℃まで上昇するとやはり死んでしまいます。哺乳類は進化の過程で、生存するための最適温度として30℃と45℃の中間の36~38℃を選んだものと思われます。また、細菌類の多くは60 ℃ で死滅します。低温殺菌の温度が60 ℃ に設定されている所以です。生物は無数の細胞から出来ており、狭い“すきま”がたくさんあります。生命現象は“すきま”の水の特異性と深く関わっていると言えそうです。
Ⅳ.おわりに
水は軽水炉にとって最も重要な材料の一つではありますが、それ以前に、地球上の生きとし生けるものにとって、欠くべからざる存在であることは言うまでもありません。当然、水に関わる話題が尽きると言うことはありませんが、このところ、あまり芳しくないものも含めて特に話題が豊富になってきているように思われます。水道水の水質悪化、いわゆる活性水商品の氾濫、酸性雨の問題、地球の温暖化、同じく砂漠化、海水の淡水化、海水資源の利用、海洋深層水の利用、超臨界水の利用、等々数えあげればきりがありません。今ほど従来にも増して水に対するより深い洞察と認識が必要とされているときはないと考えます。
- 参考文献 -
1) 長尾博之, 軽水炉と水 - 水の常識・非常識, 日本原子力学会誌,Vol. 45, No. 3, 179~183 (2003)
2) ジョスリン・ゴドウィン著,松田和也訳,北極の神秘主義,工作舎,(1995.9)
3) 高橋 実,灼熱の氷惑星,原書房,(1975.2)
4) 松井孝典,水惑星はなぜ生まれたか-宇宙論的地球観とは何か,講談社ブルーバックスB-689,(1986)
5) Linux Pauling著,小泉正雄訳,化学結合論,共立出版,412(1962)
6) G. Peschel and K. H. Adlfinger, Z. Naturforsch., 26a, 707-715 (1971)
東北大学大学院工学研究科
附属エネルギー安全科学国際研究センター
客員教授 国谷治郎
BWRメーカーの研究所を定年退職後、原子力安全・保安院の高経年化対策強化基盤整備事業に関与させて頂き、現在に至るまで構造材料の応力腐食割れ研究一筋の研究生活を過ごして参りましたので、材料から見た水化学と言いましてもかなり限定的かつ取りとめのないお話になりますことを最初にお断りしご容赦いただきたい。
BWR再循環系304鋼配管溶接部の粒界型応力腐食割れ防止技術の開発はご承知のように国を挙げての大命題であった。応力腐食割れは読んで字の如し応力と環境とそれに材料があって起こる現象であるので、防止技術の開発はそれぞれの要因を排除する方向でそれぞれの分野で進められた。材料の視点からは当然のこととして応力腐食割れを起こさない、あるいは耐性の高い耐応力腐食割れ材料の開発が進められた。304鋼に代わる材料を開発するということで代替材開発と云われた。
代替材料の開発と選定に当たって、材料屋が採用した環境条件はいわゆる加速環境である。材料には出来るだけ実機に使用されている部材と同等の条件を与え、応力と環境条件は出来るだけ加速させる。すなわち、このような実機では考えられない厳しい加速環境下においてもこのBという材料の応力腐食割れに対する耐性はAに比較して格段である、ということをもってB材料を開発したとした。この考え方は材料屋の視点で至極当然であると思われた。試験環境としての水質条件は水化学といった何かきめ細かな崇高さはなく、考えられる範囲で加速条件であれば良いとの認識であった。
やみくもに加速条件としての水質条件を決めたわけではなく、材料屋であってもその点は大切なところであるので、それなりの基礎実験を積み上げて条件決めをしていった、と言いたいところであるが、まずこの分野の研究において先行していたGE社が採用していた溶存酸素量を目一杯入れる条件を採用した、というのが実態であった。しかし、304鋼の粒界型応力腐食割れ感受性は溶存酸素量が大きくなるほど間違いなく大きくなったので、この選定は正しかったと思われる。
応力腐食割れ試験はご承知のようにオートクレーブの中に試験片を入れて高温高圧水を循環させながら応力を負荷させて行われる。当初は静置式オートクレーブといって循環ループを持たない単にオートクレーブのみの試験装置が用いられた。これでは、環境条件としての水質条件を試験中一定に保持することは出来ないことや、実機環境を模擬出来ないという理由で主流は循環式になった。水質条件として腐食電位、導電率、硫酸イオン濃度等々が厳しい制御項目となったのは材料研究の歴史から見ると最近のことである。
実験条件としての水質条件を加速させた環境下で開発された原子力用316鋼等が使用された炉心シュラウドや配管に応力腐食割れが発生したのは周知のことである。それでは、開発当時採用された実験条件で材料条件及び水質条件のどちらに問題があったのであろうか。その後の多くの研究によってそれは両者にあった、すなわち材料条件として冷間加工や強研削が考慮されていなかったこと、水質条件として隙間環境が考慮されていなかったことが実験室的には応力腐食割れが起きなかったのに実機で起きた主たる原因であることが明らかにされたわけである。
材料屋は、応力腐食割れにおける主役は材料であり水化学は脇役であると捉える傾向にあり、水化学屋はその逆の傾向があるのではないだろうか。(そう思うのは筆者だけかも知れない)応力腐食割れに対しては両者とも主役である、という思いは最近特に強く、両分野の研究者のコラボレーションは今後益々重要であると思う次第である。
水化学ロードマップの諸課題とその相互関係(平成20年6月2日)によると、構造材料の高信頼化の応力腐食割れ(SCC)の抑制の課題として以下が記載されている。 ・SCC機構の解明(酸化種・影響、酸化皮膜の影響、放射線照射の影響)・ラジオリシスモデル・その場計測技術・SCC環境緩和技術の開発・検証・標準化・照射試験設備の整備。いずれも重要な課題であるが、いずれも今に始まった課題ではなくもう30年以上も前から言われ続けている課題に思われる。材料にも同じことが言えて箇条書きされる重要課題は30年前と変わらないように見える。基本となるところの大命題は変わらないが、その中身は新しい知見が積み上げられ、らせん階段の如く変わって来ているはずである。すなわち、研究の継続性が大変重要であると思われる。
筆者が現在携わっている原子力安全・保安院の高経年化対策強化基盤整備事業においても応力腐食割れは最重要課題の一つであり、水化学の視点からの研究も鋭意行われている。問題提起の捉え方について一言。平成19年度の成果報告に使われた資料から引用させて頂くと以下のようである。(少し長くて恐縮)
「近年の応力腐食割れに関する新たな知見によると、実機において応力腐食割れの発生進展に影響を与えていると考えられる要因で、まだ十分な検討が進んでいないために、現在の応力腐食割れ評価には取り入れられていない因子がある。たとえば、放射線分解水質や照射速度などの因子が応力腐食割れ挙動に与える影響は、従来ほとんど研究が行われていない。一方、高経年化対応ロードマップおよび水化学ロードマップの見直しまたは策定が行われている。そこにおいては、上記の現在の応力腐食割れ評価に取り入れられていない重要因子とその検討の必要性が明確に示されている。従って、放射線分解水質および照射速度が応力腐食割れ挙動に与える影響について評価することが必要である。」という主旨が述べられている。放射線分解水質がSCC挙動に与える影響は従来ほとんど研究が行われていない、ということはなくて、材料屋から見ると過去において系統的な研究が行われ、その成果は過酸化水素、ガンマ線の影響も含めてCorrosion J’l、NACE (1997)に報告1),2)されていると認識している。過酸化水素の影響に関してもいくつかの論文3),4)がある。研究の継続性を考慮し、それらの結果を踏まえた研究が展開されることを期待したい。
科学的合理性を持って現象を説明することが強く求められている。このための唯一の近道はやはり機構の解明であると思う。水化学ロードマップにおいて構造材料の高信頼化の応力腐食割れの抑制の課題としてまず応力腐食割れ機構の解明が謳われており、また高経年化対応技術戦略マップ2008においても応力腐食割れ機構解明は重要課題と位置付けられている。機構解明のために必要な研究内容とその年度展開を明確にしていくこと、すなわち応力腐食割れ機構基盤研究ロードマップを材料屋及び水化学屋が協調して策定していくことが肝要と考える。
庄子5)は、応力腐食割れ機構解明に向けた基盤研究ロードマップを策定することが焦眉の急であることを指摘し、固相酸化機構を柱とした研究計画を策定することを提案した。BWR環境中で起こる構造材料の応力腐食割れ機構に関してはいくつかのモデルが提案されているが、最近はすべり酸化、固相酸化といった酸化モデルが主流で金属が溶解するとしたすべり溶解モデルは分が悪い、というかもう認められていないようでさえある。固相酸化機構は酸化皮膜自体の劣化を考えるもので、酸化皮膜が割れることを必要としないモデルである。
研究の進め方として一つのモデルを持ってそれを実証する実験観察を行っていく方法とまず実験観察を行ってからモデルを導くのと両方の仕方があるが、前者の進め方が最終ゴールへの近道と思われる。すなわち、実験観察の結果そのモデルが違った場合はそれを踏まえてモデルを修正しまた実験観察する、という進め方が結果的に効率的と思われる。現在いくつかの機構モデルが提案されているが、まず固相酸化機構を柱として応力腐食割れ機構解明のための基盤研究ロードマップを材料屋及び水化学屋が協調して策定していくことが今必要なことではないかと思う次第である。
材料には低炭素系オーステナイトステンレス鋼、ニッケル基合金、炭素鋼、低合金鋼があり、割れ形態には粒界型応力腐食割れ、粒内型応力腐食割れがあり、慣用的な応力腐食割れ呼称としてIGSCC、IASCC、NiSCC、PWSCC、TGSCCがある。それに水化学としてBWR、PWRがあり、BWRにはHWCもある。それぞれに機構があるのか統一的な機構があるのか。美的感覚からすると統一的機構の存在を期待したい。
本部会報に執筆の機会を与えて下さった日立GEニュークリアエナジー(株)日立事業所原子力サービス部 布施元正様に感謝いたします。
参考文献
1) E. Kikuchi, et al : Corrosion, Vol.53, No.4, 306(1997)
2) N. Saito, et al : Corrosion, Vol.53, No.7, 537(1997)
3) K. NAKATA, et al : Proc. 5th Int. Symp. on Environmental Degradation of Materials in Nuclear Power System - Water Reactor, p.995(1992)
4) H. ANZAI, et al : Corrosion Science, Vol. 36, No.7, pp. 1201-1211(1994)
5) T. Shoji : Research Activities of Stress Corrosion Cracking Session, ISaG2008 The University of Tokyo, Tokyo, Japan, 7.24-25, 2008
(財)電力中央研究所 材料科学研究所 平野秀朗
我が国においては、昭和45年に軽水炉の商業運転が開始されて以来、平成20年3月現在55基(沸騰水型軽水炉32基、加圧水型軽水炉23基)の軽水炉が運転されており、その発電量は全発電量の約35%以上を占めている。軽水炉発電は、我が国の発電のベースロードとしてエネルギー供給の柱となり続けるものと考えられる。
軽水炉発電の運転に必要な水化学管理は、プラントの運転経験や技術の進歩を反映して様々な改良が加えられ、これまでプラント構成材料の腐食抑制、燃料健全性の維持、線量率低減等の面において多くの成果を挙げてきた。
原子力発電所が我が国で営業運運転を開始してから40年以上になる。原子力発電技術において、原子炉安全確保のため核物理、核燃料、原子炉制御、保健物理などは重要性が大きいとしてその必要性を改めて論じる人はいないが、設備の健全性の鍵を握っているにも係わらず「水化学」については、残念ながらその重要性が必ずしも関係者の間でも十分浸透しているとはいえない。
しかし、近年、水化学の様々な技術オプションが登場し、複雑・多様化している。このため、水化学管理について体系・統一的に整理し、水質管理の設定根拠を明確にするべしとの認識が高まった。このような背景のもと、電力中央研究所、電気事業および日本原子力学会・旧「水化学標準」研究専門委員会は、水化学管理の体系化に係わる研究活動を推進してきた。その後、JEAC4111「原子力発電所における安全のための品質保証規定」が制定され 、水化学管理に対しても品質保証が求められるようになり、化学分析方法、化学管理品質保証の体系化も進めることとなった。
2-1.火力発電所における水化学管理
火力発電所のボイラの給水及びボイラ水の水質は、ボイラの経済的運転及び安全上の重要な管理項目であり、JIS B 8223 「ボイラの給水及びボイラ水の水質」が1961年に制定され、その後、1969年、1977年、 1989年、1999年、2006年に改正された。JIS B 8223の制定と合わせ、ボイラの給水、ボイラ水及び蒸気の試験方法について規定したJIS B 8224 「ボイラの給水及びボイラ水-試験方法」が、1961年に制定され、その後 1969年、1986年、2005年に改正された。国内の火力発電所のボイラの給水及びボイラ水の水質の水質管理は、JIS B8223とB8224に基づいて実施されている。
2-2.軽水炉水化学管理の体系化への取組み
2-2-1. 軽水炉の水化学の運用・管理の体系化
火力のJIS B 8223 「ボイラの給水及びボイラ水の水質」に対応するものとしてBWRでは、BWR水化学管理書、一方、PWRでは、PWR一次系およびPWR二次系水化学管理書が挙げられる。
1)BWR水化学運用管理
BWRプラントの水化学管理は、主に以下の4項目を目的として実施されている。
・構成材料の健全性の確保
・燃料被覆管健全性の確保
・従事者被ばくの低減
・放射性廃棄物発生量の低減
近年は、プラント高経年化に対する予防保全の観点から応力腐食割れ(SCC)抑制対策のため、腐食電位を低減する技術として水素注入や、それと併用した貴金属注入などの技術オプションとして、プラントニーズにより採用されている。
BWR水化学管理書では,出力運転時および起動・停止時の水化学管理について,上記の目的を達成するための管理手法などを体系的に取り纏めた。
なお、BWR水素注入運用管理については、その詳細を別途記す必要があり、BWR水素注入管理書として取り纏められる予定である。
2)PWR一次系水化学運用管理
PWR一次系水化学管理は、主に以下の3項目を目的として実施されている。
・一次系構成材料の腐食抑制による健全性確保
・燃料被覆管の腐食抑制による健全性確保
・放射能の発生源・沈着抑制による被ばく低減
PWR一次冷却材系統は,原子炉容器(燃料集合体),蒸気発生器,一次冷却材ポンプおよびこれら主要機器を接続する一次冷却材配管で構成されている。出力運転中の系統に放射能の生成源となる炉心を含んでいることから,定期検査時の作業者の被ばく線量に留意する必要がある。PWR一次系水化学管理書では,出力運転時および起動・停止時の水化学管理について,上記の目的を達成するための管理手法などを体系的に取り纏めた。
3)PWR二次系水化学運用管理
PWR二次系では、蒸気発生器二次側で起こる沸騰及び蒸発に伴う不純物の局所的な濃縮による蒸気発生器伝熱管損傷の防止あるいは抑制することを中心とし、系統構成機器の腐食抑制とあわせて機器の健全性を確保することを目的としている。
・蒸気発生器の腐食抑制による健全性確保
・二次系構成機器の腐食抑制による健全性確保
PWR二次系水化学管理書では,出力運転時および起動・停止時の水化学管理について,上記の目的を達成するための管理手法などを体系的に取り纏めた。
2-2-2. 軽水炉の化学分析の体系化
水化学管理の基本となる化学種の分析値は、水試料の分析・計測によって求められるものであり、その分析・計測法は、得られた数値が広く信頼されるように広く一般に認知された方法が望ましい。火力のJIS B 8224「ボイラの給水及びボイラ水-試験方法」に対応するものとしてBWRでは、BWR化学分析標準法、一方、PWRでは、PWR化学分析標準法が挙げられる。
1)PWR化学分析方法
PWRでは、JISに規定されていない、ほう素、放射性よう素、溶存水素、リチウム、トリチウム、全α放射能、全β(γ)放射能、γ線放出核種、放射性ストロンチウム等の16の分析項目に関し標準分析法を作成する必要が有る。
2)BWR化学分析方法
BWRでは、PWR化学分析方を参考に、JISに規定されていない、溶存水素、ほう素、過酸化水素、全α放射能、全β(γ)放射能、γ線放出核種、放射性ストロンチウム、トリチウム、放射性よう素および放射性希ガスに関する分析法を作成する。
2-2-3. 軽水炉の化学管理品質保証の体系化
原子力発電プラントの運転管理を実施している各事業者は、安全、安定運転を目的としたプラント運転に関する諸規則による法令要求事項、ならびに品質保証上の要求事項に基づき水化学管理を実施している。
法令要求事項の監視項目については、電気事業全体で検討を行っている。しかし、具体的な運用となる試料の採取頻度、採取方法、採取箇所などは各事業者に委ねられている。前述したように、JEAC4111「原子力発電所における安全のための品質保証規定」が制定され 、炉規則第7条「記録」においては「品質保証計画に関しての文章及び品質保証計画に従った計画、実施、評価及び改善状況の記録」が要求されている。
2-2-4. 軽水炉水化学管理の体系化の全体像
上述したように、軽水炉の水化学管理に関しては、BWRおよびPWRそれぞれについて、「水化学運用管理」、「分析方法」および「化学管理品質保証」があり、軽水炉水化学管理の全体の体系化像を図1に示す。
図1.軽水炉水化学管理の体系化の全体像
上述したように、電力中央研究所、電気事業および旧「水化学標準」研究専門委員会における水化学管理の体系化の取組み、並びに原子力発電所の水化学管理についても広く国民の理解や信頼を得る必要があるとの社会的動向が高まっている。これを受け、学識経験者、電気事業者、プラントメーカ等の関係者が中心となり、水化学管理および化学分析に係わる学会標準を制定することを目的して、日本原子力学会標準委員会に水化学管理分科会の設立を提案し、2007年11月16日に承認された。
3-1.標準原案作成の実施体制
水化学管理分科会では、「化学分析標準」と「水化学管理指針」を作成することを計画している。本分科会およびその下に設置する(仮称)PWRおよびBWR作業会において、原案を作成し、標準委員会に諮ることにより、化学分析標準法、BWRおよびPWR水化学管理指針を策定することを計画している。「水化学管理指針」は日本原子力学会の標準として、「化学分析標準」はJISとして広く一般に公開することを予定している。標準作成の実施体制を図2に示す。
図2.標準原案作成・審議・制定までの体制
3-2.標準作成に係わる当面のスケジュール
水化学管理分科会では、PWR化学分析標準法の策定を優先し実施しており、その後順次、BWR水化学管理指針、PWR一次系水化学管理指針、PWR二次系水化学管理指針およびBWR化学分析標準法を作成する計画である。水化学管理分科会の標準作成に係わるスケジュール(案)を図3に示す。
図3.水化学管理分科会の標準作成に係わるスケジュール(案)
PWR化学分析標準の作成では、(その1)として、「分析共通事項」および「ほう素分析」を、(その2)として、溶存水素、全α放射能、全β(γ)放射能、γ線放出核種、放射性ストロンチウム、トリチウム、放射性よう素および放射性希ガスに関する分析法を、(その3)として、放射性バリウム、放射性セシウム、クロム酸イオン、リチウム、過酸化水素、モノエタノールアミン、グリコール酸を順次作成する予定。
軽水炉の水化学標準の策定を進める上での今後の課題として、以下の項目が挙げられる。
1) 水化学管理分科会の下の標準作業会は、BWRおよびPWR一次系と二次系の水化学管理指針、並びにBWRとPWR分析化学管理標準法と多岐に亘る分野の標準を作成することになる。また、標準作成の過程においては、水質管理指針における管理値の設定および幾つかの化学分析方法等に関しては、BWRとPWRとの間で整合・調整を取る必要がある。このため、作業会の体制を整備・強化する必要がある。
2) BWR水素注入標準に関しては、SCCのき裂進展速度抑制の観点から関連の深い機械学会の標準とするのか、また、化学管理品質保証の取扱い等について業界標準とするのか学会標準とするのか検討する必要がある。
3) 水化学標準は、制定後も常に新しい技術・情報を適宜取り込み、定期的に改正して行く必要があり、本分野における人材の育成と技術継承も重要な課題である。
1) 近年、水化学の様々な技術オプションが登場し、複雑・多様化している。このため、水化学管理について体系・統一的に整理し、水質管理の設定根拠を明確にするべきとの認識が高まった。このような背景のもと、電力中央研究所、電気事業者および日本原子力学会・旧「水化学標準」研究専門委員会等が中心となり、水化学の体系化に係わる先駆的な取組みがなされてきた。
2) 日本原子力学会・標準委員会の下に水化学管理分科会が設置され、原子力発電所の水化学管理の標準を策定することとなった。同分科会の当面のスケジュールとして、PWR化学分析標準法の策定を優先し、その後、順次、BWR水化学管理指針、PWR一次系及び二次系水化学管理指針、BWR化学分析標準法を策定していく計画である。
3) 今後の課題として、標準策定に当たる水化学管理分科会の作業会の体制の整備・強化、および本分野における人材の育成と技術継承が挙げられる。
日本原子力発電株式会社 目黒 芳紀
2000年代初頭まで80%台を維持していた原子力発電所の設備利用率が、ここ数年低下し2007年度には61%になった。最近の原油価格の高騰、地球温暖化抑制対策として、原子力発電に対する期待が大きいにも係わらずその期待に応えきれず残念である。
発電所の長期停止の原因は、発電所の不祥事、地震などにも因るが、最近の事例にみるとトラブルの大半は機器・設備のSCC,FACなど材料健全性に起因することが多い。
原子力発電所が我が国で営業運運転を開始してから40年以上になる。原子力発電技術において、原子炉安全確保のため核物理、核燃料、原子炉制御、保健物理などは重要性が大きいとしてその必要性を改めて論じる人はいないが、設備の健全性の鍵を握っているにも係わらず「水化学」については、残念ながらその重要性が必ずしも関係者の間でも十分浸透しているとはいえない。
水化学部会では研究専門委員会の時代から、年数回開催される研究会に、毎回100名の水化学研究者・技術者が集まり、夫々の具体的な経験、研究等の成果を紹介し、それを基に活発な議論を行っている。この議論を通し、日頃から一生懸命「水化学」に取り組んでいる技術者の真剣な思いを、原子力事業関連の上層部の方々や他の技術分野の方々に理解して頂くことが必要と考え、活動のあらましと今後の期待を以下に取り纏めた。
原子力学会に於ける「水化学」の歴史は、1982年に研究専門委員会として活動を開始したのに始まる。昨年よりその活動をより深化させると共に、幅広く燃料、材料等他の原子力分野との交流を図るため水化学部会に改組するなどの経緯を経て今日に至っている。
発足当初は、軽水炉の運転経験の蓄積と水化学情報の収集が中心であったが、最近ではプラントの特性を考慮した具体的対策に取り組んでいる。ここではその事例を紹介し「水化学」が原子力発電所運営上重要な役割を担っていることを紹介したい。
1)燃料被覆管の健全性維持とFPの環境放出低減
軽水炉(BWR)の初期には、燃料被覆管の損傷が多く発生し、被覆管の健全性を確保するために、燃料の成型加工、PCIOMRなど運転手法の改善と共に、水化学上は多量に原子炉内に持ち込まれていたクラッドを低減させ被覆管の腐食を抑制させるよう努めた。燃料から放出されたCs,Sr,Xe,KrなどのFPについては挙動を把握しつつ、活性炭式希ガスホールドアップ装置などを導入し、環境放出低減に努めた。これらの結果1975年頃から燃料破損は漸次減少し、FPの環境放出もなく今日に至っている。
2)クラッド対策(放射化腐食生成物による一次冷却系の放射線量率の上昇抑制)
燃料破損の問題が収束に向かいつつある1973年ころから、一次冷却系の放射線量率が上昇し、これに伴い従業員の被曝線量問題がクローズアップされるようになってきた。これは給水系から持ち込まれたクラッドが燃料表面に付着し、中性子照射を受けCo-60,Mn-54などの放射化腐食生成物が生成され、冷却材によって循環するうちに機器・配管に付着蓄積し、場の放射線量率を上昇させる、所謂BWRのクラッド問題である。軽水炉導入初期は一次冷却系におけるクラッド挙動が良く分からなかったことから、電力、プラントメーカが主体となって先ず実態調査を行い、クラッドの発生、移行、付着、放射化、蓄積などを定量的に把握し、モデル化し、それを基に効果的な対策を講じた。復水、原子炉などの浄化系の改善、酸素注入/鉄濃度コントロールなど復水・給水処理の改善などがその一例である。
クラッド問題を先取りするかたちでBWRの開発者であるGEは、タスクホース「Water Chemistry Program」を1973年に発足させ、米国、ドイツ、スウェーデン、日本との技術比較検討を行い好事例を各プランで採用することとした。この検討で強く印象に残っているのは、水化学の専門家だけではなく、機械、電気、燃料、発電、保健物理、廃棄物処理など原子力発電技術に係わる専門家の同席を求め、また、電力、プラントメーカーも共同で、夫々の分野からの見た率直な意見の交換・議論を展開すると共に、その成果を持ち帰り自らのプラントに反映していったことである。
従って、各分野の専門家が同時に問題を共有化し、クラッド問題に一致協力して取り組んだ。軽水炉導入初期にはこのような機運があふれており、水化学担当者も大いにやりがいを感じていた。
現在従業員の総被曝線量が高止まりしているが、これらは発電所のトラブル、検査業務によるものである。水化学が目指す一次冷却系の放射線量率は軽水炉運用の恒久的課題であるが、最近のプラントではかつてより大幅に低減していることを付記したい。
3)対策(応力腐食割れ対策)
①BWRのSCC
クラッド問題発生に少し遅れた1975年頃から米国でSCC問題が発生した。SCCは、材料、応力、水環境の3つの因子から発生する。水化学面からの対策として、BWRの場合、炉水が炉内で放射線分解(ラジオリシス)し、H2O2、O2などの酸化剤になり活性溶解型のSCCを発生させるとされており、これを抑制するためひとつの指標として腐食電位を-0.2VSHE以下に維持するため、PWR同様H2注入が試みられている。しかし、主蒸気系統の放射線量率の上昇を招くことからH2の注入量に制限があり、これを補うためNMC,N2H4の注入などが検討されている。
炉内構造材の健全性に大きな影響を与えるSCCの発生、進展を抑制するためには、そのメカニズムを解明する必要があり、そのための基礎技術として炉内における複雑な中性子、ガンマー線などによるラジオリシス解析が重要とされており、水化学部会で検討が行なわれている。原子力発電所の現場においては管理の指標として腐食電位を-0.2VSHE以下に維持することが重要とされており、それを正しくモニターできる装置の開発が必須とされている。
②PWRのPWSCC
最近PWRの原子炉容器上蓋、加圧器、SG等の管台で発生しているPWSCCについて材料選定、加工(溶接)などの面から改善対策がとられている。水化学の観点からは、(BWRと異なり)PWRでは当初からH2注入により炉水の放射線分解によるH2O2などの酸化剤の存在を抑制してきた。腐食電位も-0.7VSHE以下に維持されてきており、BWRのような活性溶解型のSCCは生じないが、逆にH2吸収型のSCCが懸念されるようになってきた。従来PWRでは通常運転において、25~35cc/kgH2O<に管理されているH2濃度の適正化が、これからのPWSCC対策の重要な課題である。
4)SG伝熱管健全性維持対策
初期に導入されたPWRではSG伝熱管の損傷が多発し、その改善がSGの構造、伝熱管の材料選択・加工など多角度に行なわれた。水化学の改善としては、当初二次冷却系の水処理剤として用いていたNa3PO4からNH4OH,N2H4のAVT処理に切り換えたことである。これは、SGの蒸気発生メカニズムを考慮すると、固形分アルカリを使用した場合、管支持板部の管穴部にハイドアウトすることが判明し、これを避けるためAVTに変更した。更に、AVT処理にした場合二次冷却系にCu系材料(例えば、給水ヒーター伝熱管)が存在すると[Cu(NH3)4]2+としてCuがSGに持ち込まれ、SG伝熱管を腐食させる恐れがあることから、給水系のpHを9.2以下に抑える必要があり、二次冷却系に使われているFe系材料の腐食対策としては、十分とはいえない。
このため、敦賀2号機以降のPWRでは、二次冷却系からCu系材料を排除し、給水pH10の高AVT処理ができる設計にしている。
5) FAC防止対策(流動加速腐食防止対策)
①PWR
2004年美浜発電所3号機の復水系統で発生した配管破談事故を契機として、二次冷却系のFAC問題がクローズアップされた。定期点検時に抽気、ヒータードレン系を含む配管の肉厚測定を行い、基準に達しない配管の交換を行なっている。
水化学面での対策としては、SGの項で述べたように高AVTに維持し、配管表面に緻密なマグネタイト皮膜を形成することが重要であるが、抽気、ヒータードレン、ベント系などの二相流系では高AVTでもFACの抑制は難しく、適切な配管設計、材料選択と肉厚検査の組み合わせて対策を考える必要がある。
最近ではBWR同様給水系に微量O2を注入し、堅固で溶解度の低いヘマタイト皮膜を形成する案が検討されている。
②BWR
クラッド対策として給水系の電気伝導度を極力低く保った超純水下で微量のO2を注入し、配管表面の皮膜を緻密な溶解度の小さいヘマタイトにすることによりFACを抑制している。PWR同様、適切な系統設計、材料選択との組み合わせによる総合的対策が必要である。
1)軽水炉における水化学対策は、上述のように燃料、原子炉構造材、復給水・タービン系を含むBOP設備に至るまで機器・設備の健全性維持、また放射線量率の低減など安全性確保の観点で幅広く関与している。軽水炉初期には水環境の状況把握の段階から始められたが、55基の軽水炉の運転経験を通して、現状では冷却材(軽水)と構造材料の境界で生じるSCC、FAC、クラッド問題などの発生、進展現象についてメカニズムが明らかになりつつあり、モデル評価をもとにシュミレーションが進みそれを基に上述のように着実に諸対策も具体的に講じられ成果を上げつつある。
しかし、最初に述べたように既存軽水炉の設備利用率は低い。トラブルの主因の一つは機器・設備の腐食損傷に起因しており、水化学対策は進んでいるが完結していない、今後ますますその役割は重要になると認識しておく必要がある。
2)これまでの経験を通して得られたことは、発電プラントが運転を開始する段階から水化学管理を行なうのでは遅すぎる、ということである。即ち、プラント設計の段階から水化学の担当者を導入し、機械、電気、材料などの技術者と一緒になって既存プラントで得られた知見をフィードバックさせる、建設段階には防錆対策など品質管理を充実させる、試運転の初期からプラント特性を把握する、など万全の対応を図ることが肝要である。従来は水化学担当者のプロジェクト参加は試運転段階以降で、先行プラントの知見が設計などに入りにくい面があった。電力、プラントメーカーは水化学担当者の積極的投入を期待したい。また、水化学担当者はプラントエンジニアリングに関する知識を幅広くもち、その期待に応えて欲しい。
3)2000年半ば以降まで軽水炉時代は継続する。健全性を保ち安全に軽水炉を運用するためには、既存の55基については高経年化対応が喫緊の課題である。特に水化学面からは構造材料と冷却材の境界で生ずるSCC、FACを初めとする腐食損傷を極小化させる必要がある。さらに、放射化腐食性生物による従業員に被曝、放射性廃棄物の発生などの低減化も必須の課題である。更に、既存炉においては燃料の高燃焼化、出力向上などが計画されており、炉内における中性子、ガンマー線による冷却材のラジオリシスが変化してくる。この場合の燃料(AOAを含む)、原子炉構造材の健全性も現段階から評価し、対応を検討しておく必要がある。
これから、精度の良い水化学管理をしていくためには、腐食損傷が構造材料と冷却材との境界で生じていることから、腐食反応を直接監視・管理するため腐食電位(ECP)の管理が主流になるものと思われ、そのための正確な測定は欠かせない。炉心、炉外(例えばSG、PWR二次冷却系、BWRBOP)環境下におけるモニターの開発が急がれる。
4)また、現在国、民間レベルで開発されている将来炉、中小型炉に対して浄化系を含む系統設計、適正材料の選択などにも既存炉の知見をもとに積極的に提言していく必要がある。いずれは高速増殖炉の実用化が必要になる。この時の3次冷却系の水化学は高温、高圧蒸気条件下における管理が要求される。長期原子力時代を想定した水化学の検討が必要である。
原子力発電所を導入に際しては、電力、プラントメーカーは、その時点での最新の知見を基に設計、建設している。然しながら、実際の運用に入ると種々の新しい事象が発生する。
これまで原子力発電所で発生したトラブルを見てみると、放射線環境下にあること、腐食損傷を例にとっても特殊な蒸気・水環境条件下にあることなど、所謂火力発電所にはない原子力発電所固有の環境条件に起因していることが少なくない。
原因、対策を論じる場合、基礎的学術的究明と共に再発防止の確証試験が必要になることが多い。また、原子力発電の場合、常に原子炉安全を第一として万全が求められており、社会的安心を得て運用するためには、第3者的評価は欠かせない。
原子力発電所の建設、運用は、電力、プラントメーカーが担っているが、上記のような観点から、産業界のみならず大学、研究機関、関連企業の総合的な協力・協調が必要である。
水化学部会においては、これらを集積し、夫々の機関の特性に応じ活動できる場の提供を期待したい。そのためには、産業界からの課題の提供と研究機関からの基礎的・学術的技術の提供が必要となる。特に、原子力発電所で生ずる構造材と冷却材の境界で生ずる複雑な課題を先取りし、解決の方向性を打出し、産業界が持つ課題の解決に応えて欲しい。
また、軽水炉の水化学上の課題は世界共通であり、効率的に課題の解決を図るためには、軽水炉を運用する欧米、アジアを含めた海外機関との技術交流を通し、相互に学びあうことが効果的であり、本水化学部会が先導的立場に立った国際交流の活用を期待したい。
「水化学」部会副部会長 武藤栄
(東京電力株式会社)
「水化学」部会の副部会長を勤めさせて頂いている武藤栄です。微力ではありますが、部会長の内田先生とともにこれまで原子力発電プラントの運転・運営を通じて蓄積した経験を整理し「水化学」の技術確立と発展に努力して参りたいと存じます。
昨今、洞爺湖サミットをはじめ、多くの場で世界規模の環境問題が議論され、供給安定性に加え環境性に優れた原子力発電のもつ価値がますます注目されつつあります。我が国でもプラントの安全性、信頼性確保を大前提にプラントの安定運転と性能向上に向けた改善を継続的に図ることが原子力発電の有効利用上、大切です。世界各国でも標準化されたプラント性能指標を相互にベンチマークしながら、PDCAの輪を回す継続的な改善の努力が行われています。
我が国のプラント性能を世界と比較してみると、燃料漏洩率の低さや計画外停止率の低さなど、群を抜いて良好な実績をあげているものがある一方、残念ながら稼働率は欧米諸国はもとより近隣アジア諸国と比較しても劣後しており、また、作業被ばく量も世界水準と比較して決して低いものではありません。また、環境への負荷低減の観点から放射性廃棄物の発生量を抑制することも重要な課題であります。
こうした軽水炉のプラント性能は、多くがプラント構造部材や燃料等の健全性管理の善し悪しに依存しています。例えば、BWR、PWRともプラント構造部材の応力腐食割れや配管減肉への対処、あるいは燃料健全性の問題はいずれも計画外停止期間の長短や廃棄物発生量、そして最終的には稼働率にも大きな影響を与える重要な課題です。そしてこれらの多くは原子炉の炉水の性状、すなわち水化学に依存して決まるものであり、原子力にかかる諸課題を解決し性能の改善を図るうえで、水化学が担う役割はたいへん大きいものがあると考えております。
これまで水化学管理技術は、主にプラント運転経験、種々の知見、技術、工夫を過去から順次引き継ぎつつ、専門家の中でそれらを有機的に繋ぎあわせることで構成されてきました。しかし、軽水炉性能向上という大きな目的に照らして、水化学分野におけるこうした蓄積を体系的に整理し、敷衍化し、形式知として一つの科学的な学問体系として構築することについては、未だ成すべきことが多いと感じております。水化学の重要性に鑑みて、現在に至るまでの蓄積を集約し、水化学に係る作用のメカニズムを解明し、再現性のあるものとして整理することが取り組むべき大きな課題であり、それをふまえプラント運転管理における目的に見合った処方箋として、各施策を体系的に構築していく必要があると考えております。また、こうした体系構築の成果については諸外国に向けて情報発信していけるようなものとなることを期待しております。
この体系構築には【産・官・学】が協同のうえ、三位一体となって総合力を発揮しながら水化学にかかる知見の整理をすることが重要であります。どうか関係者の皆様の活発な参加と協働を頂きますよう、よろしくお願い申し上げます。
(武藤栄、2008年8月吉日)
すでに秋の気配が濃厚になってきました。皆様がたにはそれぞれお元気でご活躍のことと拝察いたします。今年は日本全体で大きな変化が見られましたが、水化学部会においても新たな体制で次の目標に向かって進みだすことになりました。部会の将来像に関しても種々の観点で議論が始まったところですが、多くの部会員の方々の積極的な参画による活動の活性化が不可欠であると思います。本部会報がそのための一助になれば幸いです。
(日立GEニュークリア・エナジー 布施記)
“水”あれこれ ・・・(2)
長尾 博之
“水”のお話を始めるに当たって、本稿の(1) 1)では、この地球の表面を覆う膨大な“水”の起源のお話と、水の七不思議なるお話を致しましたが、先ずは古人の“水”に対する考え方のご紹介から始めるべきではなかったかといささか反省しております。そこで、今号では、水という物について人はどのように捉えてきたかについて考え、次いで、紙面に余裕があれば、日本人の水に関する科学的な業績の1つをご紹介したいと思います。
1. 古代人の水への想い
まず、カナン(パレスチナおよび南シリアの古代の呼称)から出土した、楔形文字で書かれた世界最古の物語の中に、「水は万物のみなもとである」という一文があるそうです。この地方では、前16世紀~13世紀(後期青銅器時代) には、すでに楔形文字を利用した世界最古の実用的なアルファベットが発明されていたようですので、それよりも古い時代から、水はこのようにとらえられていたものと思われます。
前8世紀後半の(とされている)古代ギリシャの伝説上の天才詩人と言われるホメロスは、「万物を生んだ親は水の神オケアノスなり」と吟じました。その後、宇宙を構成する物質を追い求める哲人が現れました。西洋哲学の祖といわれる哲人ターレス(前546年没)です。ターレスがたどり着いた結論は、「水は万物の根源(アルケー)なり」というものでした。
これらは、水をすべての根源ととらえる、いわゆる“一元論”であるわけです。その後、万物の根源は水ではなく、“空気”だとか、いや“土”だ、いや“火”だ、とする別種の一元論が続出しましたが、やがて、これらを同時に認める多元論があらわれました。ギリシャの“四根”説 は「火、水、地、空気」を、また古代インドの“四大(しだい)”説は「地、水、火、風」を、さらに古代中国の“五行(ごぎょう)”説は「木、火、土、金、水」をそれぞれ万物の根源とする多元論ですが、このいずれにも“水”が入っています。
水の実体が明らかになったのは、時代もはるかに下って、18世紀に入ってからです。1784年にイギリスのキャベンディッシュが、「水から発生した気体を精製して燃やすと水になる」、したがって「水は元素ではない」と発表しました。さらに四半世紀後の1811年に、イタリアのアボガドロが唱えた分子説によって、それまでの多くの科学者達の業績が集大成され、「水はH2Oという組成をもつ物質である」ということが明らかになりました。
さらに現代にいたるまで、水の科学的側面については、実に多くのことが解明されましたが、そのことによって、水の重要性や有用性がいささかでも減ったわけではありません。
ここで、水の動的な特性と静的な特性を見事に表現した我が国は江戸時代(と思われる)の「水五訓」(または水五則)および「水五徳」という各五箇条の文言をご紹介します。日本人の感性の鋭さ、大きさがよく分かるような気がします。
水五訓(動)
水五徳(静)
なお、残念ながら、これら五訓や五徳の作者も年代も分かっておりません。黒田如水の作とする説もあるようですが定かではありません。何方かご存じの方はいらっしゃいませんか。
2. 日本人の知恵
水溶液の代表である“お酒”は、出来上がってからも、特殊な乳酸菌のために腐りやすいので、大昔には、せっかく造っても腐ってしまって、飲めたものではない酒も少なくなかったはずです。勿論、煮沸すれば、菌の大半は死滅して、長期保存が効くようになるはずですが、酒を煮沸すれば、アルコールは飛散してしまう上に、品質が著しく劣化して、とても飲用に耐えなくなります。
この事は、日本酒ばかりではなく、ワインでもしばしば起こる現象で、特に、1850~1860年にかけて、フランス・ワインの“大腐造”という事件が発生しました。つまり、大量の腐ったワインが出来てしまったというわけです。このため、フランス人は記録的な被害を被ることになりました。この事態に対処すべく、当時、微生物学分野の著名な研究者であったパスツールが、早速その対策のための研究に着手し、しばらくしてその研究成果である殺菌法をワイン工場で実践し、以後、ワインの腐造は抑えられることになりました。その殺菌法の理論とは、ワインのようにアルコールが存在している場合には、煮沸などしなくても、わずか数分の間、50~60 ℃に保つだけで殺菌効果は十分というもので、これを低温殺菌法と名づけました。当時、そのような殺菌法の考え方など全く無かったものですから、考案者であるパスツールの名をそのまま付けて「Pasteurization」と命名され、また日本語訳では「低温殺菌法」として、一般に定着した用語となりました。
ところが真実は別のところにありました。低温殺菌法を開発したのは、実は日本人だったのです。それもパスツールに溯ること300年以上も前のことだったのです。そのことは以下の古文書に明記されていますので間違いありません。
室町時代末期に、奈良の興福寺の塔頭(たっちゅう)で書かれた「多聞院日記」(僧侶たちの酒造り作業日誌のようなもの)の中に、例えば、永禄三年(1560年)五月二十日の項に、「大きな桶から酒を汲み出して、それを大釜に入れて煮させ、火入れをした。その酒が冷めないうちにまた元の大桶に戻し、桶のふたのまわりを密閉して、この日の作業はおわった」などと書かれているのです。さらにはその日以降、酒が腐りやすい夏に向けて行われる様々な酒造の作業に対して、この「火入れ」の作業記録が頻繁に出てきています。また、この古文書全体の文章から、当時の火入れの温度は大体50~60 ℃で5~10分程度保ったと推定されています。今日の酒工場で行われている火入れとさほど変わりのない驚くべき方法です2)。
上記2)の著者の小泉氏の調査では、興福寺の僧侶たちが火入れをおこなっていた時代以前に、中国や朝鮮半島その他の国々で、このような低温殺菌を行っていた事実は全くなく、従ってこの方法は、世界の民族に先駆けて日本人が最初に行ったハイテクノロジーということになります。
レーウェンフックが微生物を発見する100年以上も前、また、パスツールが低温殺菌法を考案する300年以上も前に、日本人が既に「火入れ」と称する低温殺菌法を確立して実践していたことは、まさに驚嘆すべき知恵といえます。
もし、徳川幕府の鎖国政策なかりせば、1850年代のフランス・ワインの大腐造を防げたかもしれませんし、それよりも日本はとっくの昔にバイオテクノロジー大国として、世界に冠たる存在となっていたはずである、などと想像してみるのも面白いではありませんか。
—————————————————–
1) 長尾博之「水の話シリーズ1」日本原子力学会 水化学部会報 第2号(2008年8月)
2) 小泉武夫「つい披露したくなる酒と肴の話」小学館文庫(1998)