部会報第3号 水化学RM2009 概要

水化学ロードマップ2009の概要

ロードマップフォローアップ小委員会

東京電力㈱ 小野 昇一

1.はじめに

軽水炉の安全性・信頼性にかかわる重要課題の多くは、高温・高放射線環境下で、構造材料あるいは燃料と、冷却材・減速材として用いられている水の境界領域で発生している。水化学は、各種構造材料と燃料が水を介して相互に影響を及ぼすプラントシステムを包括的に捉え、多様な課題や目標に対し調和的な解決あるいは実現を目指す工学分野である。

近年、我が国では、エネルギーセキュリティーや地球温暖化防止の観点から、基幹電源としての原子力発電の役割に期待が高まっており、安全性と信頼性の確保を前提に、既存軽水炉の活用(高経年化対応、燃料高度化、利用高度化)ならびに次世代型軽水炉の開発が進められている。これらを矛盾なく効率的に推進するためには、関連分野と協力・連携のもと、水化学分野の貢献が欠かせない。

このような認識に立ち、 2007年2月、産官学の専門家による検討を通じて第一次水化学ロードマップが策定された1)2)。その後、(社)日本原子力学会水化学部会に設置された「ロードマップフォローアップ小委員会」(委員長:勝村庸介東京大学教授)において、その後の状況変化や新たな知見・経験を反映すると共に、関連分野のロードマップ・技術戦略マップの動向を踏まえ、第一次水化学ロードマップを見直し、導入シナリオ、技術マップおよびロードマップからなる技術戦略マップとして、水化学ロードマップ2009を策定した。

  1. 水化学ロードマップ策定の意義

軽水炉は、安全性を確保しつつ公益性を向上させるために、様々な目標が設定されている。水化学ロードマップは、それらを効率的、かつ、同時に達成させる観点から、図-1に示すように、構造材料、燃料と原子炉冷却水との境界領域における諸課題をプラントシステム全体のバランスの中で捉え、調和的解決を目指すアプローチを利害関係者に示している。

水化学ロードマップに基づいて実施された研究成果は以下の活用を前提としている。

①  既存発電用軽水炉プラントの高経年化対応、燃料高度化、利用高度化の課題の解決、および、これらを支える作業環境改善(被ばく線量低減)、自然環境への負荷軽減(放射性廃棄物の発生抑制)など水化学固有課題の調和的な解決に資する。

②  安全に係わる成果については、アウトプットの一つとして規格・基準類の整備に反映していく。また、水化学関連の規格・基準類の整備に際しては、プラントの維持管理(評価、検査、補修)や新検査制度(評価指標、予防保全)に係わる規格基準類との連携を図る。

③  革新的な技術成果は、我が国原子力産業の国際展開に繋げると共に、将来の次世代型軽水炉の設計に反映する。

④  国際協力の観点から、原子力発電を推進する国々と情報交換し、水化学研究の効率的な推進と活用を図る。特に、今後、大幅な増大が見込まれるアジア地域の原子力発電の安全と定着を支援するために活用する。

3.第一次水化学ロードマップの概要2)

第一次水化学ロードマップでは、(1)燃料-水化学境界領域における水化学からの課題、(2)構造材料に関わる水化学からの課題、および(3)水化学固有の課題、の視点から課題を抽出した。構造材料や燃料に係わる課題については、既に策定されていた軽水炉の安全研究ロードマップを考慮しつつ整合を図って課題抽出が進められた。抽出作業は、課題名、概要、問題点の所在、現状分析、期待される成果、実施課題、時期・期間、実施機関、資金の出所などの項目が記載された課題調査表を作成して行われた。

抽出された課題は、設備、人、環境の視点から大別され、課題の体系化表として整理された。個々の課題は、(1)設備/機器等への影響、(2) 環境/一般公衆への影響、(3)人/情報の整備のカテゴリーに分類され、以下に示す11項目の個別ロードマップに配置された。

(1)設備/機器等への影響

①基盤技術に係わるロードマップ

②被ばく線源低減に係わるロードマップ

③応力腐食割れ及び照射誘起応力腐食割れの抑制に係わるロードマップ

④燃料被覆・部材腐食/水素吸収抑制に係わるロードマップ

⑤状態監視保全の支援に係わるロードマップ

⑥FAC抑制に係わるロードマップ

⑦スケール/クラッド付着抑制に係わるロードマップ

⑧SGクレビス環境緩和技術の開発に係わるロードマップ

⑨AOAの防止に係わるロードマップ

(2) 環境/一般公衆への影響

⑩環境・一般公衆への影響に係わるロードマップ

 (3) 人/情報の整備

⑪人/情報の整備に係わるロードマップ

各個別課題毎のロードマップは、現状分析や課題実現の道筋を示した戦略的シナリオと課題内容を説明した本文、ロードマップおよび課題調査表で構成されている。

4.ロードマップのフォローアップ

4.1基本方針

第一次水化学ロードマップの目標「原子力発電プラントの安全性、信頼性の維持と経済性の向上」を堅持しつつ、その後の原子力発電に対する社会の要求や情勢の変化に対応して、確実に必要な施策を実施、実現していくため、また、産官学、学協会および関連する分野の取り組みと連携して実施していく必要から、「水化学ロードマップ2009」としてフォローアップを行った。

水化学ロードマップ2009は、先行するロードマップ(高経年化対応技術戦略マップ、燃料高度化技術戦略マップ)と同様に、下記3点で構成された技術戦略マップの形式に改訂することとした。

①  導入シナリオ:研究開発が世の中に出ていく筋道とそのための関連施策を示したもの

②  技術マップ:技術課題を俯瞰し、重要技術を絞り込んだもの

③  ロードマップ:求められる機能などの向上・進展を時間軸上にマイルストーンとして示したもの

 課題調査表は、第一次ロードマップで作成したものを基本的に継承し、その後の状況変化を踏まえて見直し改訂を行った。

4.2実施体制

ロードマップフォローアップ(RMFU)小委員会には、水化学、材料、燃料に係わる分野の専門家が参加し、産業界、学術界、学協会および国・官界が一同に会して検討を行った。被ばく線源低減および環境・公衆への影響低減に関する個別課題の検討に当たっては、水化学部会に設置されている被ばく・廃棄物低減小委員会と連携して行った。

また、先行して策定作業が行われている高経年化対応技術戦略マップおよび燃料高度化技術戦略マップの策定作業を行っている各機関とは、整合・連携を図りながら策定を行った。

5.水化学を取り巻く環境の変化

 ロードマップのフォローアップに際しては、以下に示す環境変化を考慮した。

①  高経年化対応ロードマップおよび燃料高度化等他分野でのロードマップのローリングと技術戦略マップの策定。水化学ロードマップを含め、原子力安全・保安院(NISA)安全基盤小委員会へのロードマップの策定状況報告。

②  (社)日本原子力学会標準委員会システム安全専門部会に水化学分科会が設置。「水化学管理指針」および「化学分析標準法」について検討。

③  NISA高経年化対策強化基盤整備事業茨城クラスタで水化学関連研究実施。

④  次世代軽水炉開発事業開始。6つのコアコンセプトの一つとして、「プラント寿命80年とメンテナンス時の被ばく線量の大幅低減を目指した、新材料と水化学の融合」。

⑤  新検査制度(保全プログラム)導入。事業者は、保全活動のPDCAサイクルを回すことにより、より適切な点検方法を選び実施。長期サイクル運転も可能に。

⑥  既存設備の改造等による原子炉施設利用・運用の高度化を通じ、原子炉熱出力を向上させ運転することが可能であり、我が国においても計画。

⑦  アジア地域において新規建設に向けた活動が活発化。プラント建設や設備導入に対する貢献に加え、水化学管理分野におけるソフト面での連携・サポートが更に重要に。

6.水化学ロードマップ2009

6.1第一次ロードマップからの主な変更点

 水化学ロードマップ2009は、第一次ロードマップと同じ「水化学による原子力発電プラントの安全性・信頼性維持への貢献」を目標とし、2.3項に示した基本方針に基づいてフォローアップした。

 第一次ロードマップでは、課題設定の視点毎に、設備/機器等への影響、環境/一般公衆への影響および人/情報の整備の3つに課題を分類したが、水化学ロードマップ2009では、諸課題への取り組みを支える基盤(水化学共通基盤技術と人情報の整備の2課題)とそれ以外を安全基盤研究の課題とし、さらに安全基盤研究課題を目的毎に「構造材料の高信頼化」「燃料の高信頼化」および「環境負荷低減」に分類した。

個別ロードマップの名称も、課題内容・目的を明確に表すよう、「応力腐食割れの抑制」を「応力腐食割れ環境緩和」のように改めた。また、「状態監視保全」から「状態基準保全」のように用語の変更にも対応した。

第一次ロードマップにおける「SGクレビス環境緩和」と「スケール・クラッド付着抑制」の2課題は、今回のフォローアップの中で、「SG長期信頼性確保」として長期的な観点から整理統合を行った。

第一次ロードマップで策定した個別課題毎のロードマップは、「人/情報の整備」を除いて、技術戦略マップ(導入シナリオ、技術マップ、ロードマップ)にまとめ直した。

抽出された課題とそれらの相関を図-2に示す。また、ロードマップの主なポイントを課題毎に以下に示す。

6.2概要

6.2.1安全基盤研究

 (1)構造材料の高信頼性

①SCC環境緩和

SCCは顕在化した経年劣化事象として、適切な保全プログラムの構築と適用が望まれており、材料と応力に水化学を加えた総合的なアプローチが重要である。JSME維持規格では、SCC環境緩和の効果をプラント維持管理に見込めるスキームが示されているが、対象部位のSCC環境を規定する方法が確立していないため、規格・基準には取り込まれていない。そこで、SCC環境評価手法・環境緩和技術の標準化・検証やJSME維持規格とSCC環境評価技術・環境緩和技術のリンクさせる仕組みの構築等の課題に取り組む。

今後、炉出力向上や燃料の高燃焼度化などの影響(例えば冷却材の放射線分解など)により、SCC環境が変化することが想定されるため、これらを先取りして、影響評価手法と環境緩和技術の高度化・整備を進める。

また、現状のSCC環境緩和技術は、効果の及ぶ範囲が限られたり、燃料健全性や被ばく線源上昇などへの影響を回避するため、その効果が制約されたりする場合がある。副次影響が少なく、効果の大きなSCC環境緩和技術の開発・検証・標準化の研究を推進する。

②配管減肉環境緩和

現行のJSME配管減肉管理においては、肉厚測定・余寿命評価・取替えがベースとなっているが、近年、冷却材の高pH化や酸素添加などの環境緩和が、配管減肉、特に、流動加速腐食(FAC)の抑制に有効であること、また、環境緩和効果が冷却材の流れ場と密接に関連していることが明らかになってきた。従って、今後、環境緩和技術の開発・標準化・検証を進めるとともに、将来の配管減肉予測評価手法の構築への寄与を通じて、さらなる配管減肉管理の合理化に資する観点で、研究を推進する。

③SG健全性・性能維持

国内では、2000年初頭までの旧型(Alloy600MA伝熱管、Drill型管孔つき炭素鋼製管支持板)蒸気発生器(SG)を最新型(Alloy690TT伝熱管、BEC型管孔つきステンレス鋼製管支持板)へ取替えた結果、現状は、SG腐食問題は沈静化の様相を呈している。しかし、特に、SG2次側の構造クレビス部における不純物の濃縮に伴う伝熱管腐食損傷の可能性が払拭されたわけではなく、長期的な観点から、今後、継続的にクレビス腐食環境を監視するとともに、クレビス部での不純物濃縮を加速するスケール・スラッジの付着防止や不純物管理強化を推進するための研究に取り組む。

④状態基準保全への支援

新検査制度において、状態基準保全が取り入れられたが、現状は、主に、動的機器、制御盤、潤滑油が対象である。水化学管理は、もともと冷却材の水質監視をベースに、腐食環境の視点からプラントの状態監視し、これを適切なレベルに維持する活動であり、この側面を高度化し、対象部位の材料・応力因子と合わせて評価することで、静的機器を含めた状態基準保全の実現を支援するための研究を推進する。

(2)燃料の高信頼化

⑤被覆管・部材の腐食/水素化の抑制および⑥AOA (Axial Offset Anomalies)抑制

軽水炉利用高度化(出力向上)と燃料高度化(高燃焼度燃料、長期サイクル)を実施した海外プラントでの経験を踏まえ、将来、顕在化する可能性の高い課題について、関連分野と連携しつつ、事象の解明や対策の構築などに先駆的に取り組む。また、燃料-水相互作用に係わる効率的な検討を目的に、実炉照射に代わる試験技術・評価技術の確立を目指す。

(3)環境負荷低減

⑦被ばく線源低減

将来を見据えて適切な被ばく線源低減を推進し、世界トップレベルの集団被ばく線量を実現・維持していく。出力向上や高燃焼度燃料の導入に伴う影響評価、長期サイクルによる被ばく線源の上昇抑制および作業環境の改善による高経年化プラントの点検・補修の支援等について、関連分野と連携を図りつつ、課題解決を目指す。

⑧環境・一般公衆への影響低減

より一層環境負荷の少ない発電プラントとするため、水化学管理に伴って副次的に発生する放射性廃棄物低減や薬品による環境負荷を低減するための課題に取り組む。

6.2.2基盤整備

⑨水化学共通基盤技術

上記①から⑧の諸課題への取り組みや役割分担を踏まえ、今後、整備すべき施設基盤を明確化するとともに、産官学の役割分担を見直した。

⑩人・情報の整備

基本的に、第一次ロードマップのままとし、今後、関連ロードマップとの連携・協力を模索しつつ改訂を目指すこととした。ただし、水化学共通基盤技術でのフォローアップ結果を受けて、学術界での研究基盤の確保に関する記載を加えた。

7.おわりに

冷却材としての水化学管理の使命は、構造材および燃料と接し、プラント稼働中にこれらを健全な状態に維持することにある。水化学は、構造材-燃料-水の境界で生じる諸課題の調和的解決に寄与できる。また、構造材と燃料の情報はすべて水に集められるため、水化学は保全に積極的に貢献できる。

これらの研究を推進するためには、そのインセンティブを維持し、奨励する仕組みが必要である。このような自発性を導入することにより、技術者、研究者に積極的な使命が生まれることは、人材育成の観点からも重要である。

なお、本稿は、平成21年6月に発行された「水化学ロードマップ2009(要約版)」に基づいて記載したものである。

参考文献

1)内田俊介他,”原子炉水化学ロードマップ”,日本原子力学会誌, 50[5],307(2008)

2)勝村庸介,“水化学ロードマップ概要”,水化学部会報創刊号(2007年 9月 8日)