7.1.1 水化学・腐食に係わる共通基盤技術

_原子炉水化学は、線源強度低減、構成材料及び燃料健全性の維持・向上ならびに放射性廃棄物発生量の低減等において重要な役割を果たしてきた。技術的には、さまざまな材料と水との相互作用の解明とその抑制が基幹をなす。材料と水化学の組み合わせにより、現れる現象は多岐に渡るが、その本質的な点には、共通点も多い。
_水化学の研究における本質的・共通的な課題として、基礎メカニズムの解明、腐食環境の評価及び加速実験を含めた実験方法の確立が不可欠であり、水化学ロードマップ2007及び2009では、各項目に共通かつ基礎的な課題を共通基盤技術として記載した[7.1.1-1]
_上記経緯を踏まえ、本ロードマップにおいても、前章(6章)の各課題項目に関連した共通項を持つ基盤技術的課題を抽出し、水化学・腐食に係わる共通基盤技術として取り上げることとした。水化学・腐食に係わる共通基盤技術の課題抽出に当たり、ロードマップ2007及び2009と同様に、共通基盤の位置づけを以下のように設定し検討した。
(a) 燃料・構造材料・水化学固有の各研究を推進する上での共通の基盤技術(現象の把握及びモデル化には必須技術)である。
(b) 実機での現象の把握及び基礎実験と実機対応との橋渡しに重要な寄与を果たす。
(c) 材料・構造変更等の対応が困難なケースに対し、重要なオプションを与える代替技術評価のための技術基盤となりうる。
(d)シーズオリエンテッドな研究課題である。

_上記の位置づけをもとに、前章で取り上げた各課題を検討した。全ての課題に共通する課題として、まず、水化学環境の把握があげられる。また、SCCや配管減肉、燃料健全性等においては、高温水中での材料の腐食現象の理解が必要との共通的課題があげられる。同様に燃料健全性、被ばく線源低減等においては、酸化物やイオンの付着脱離に関する理解が必要との共通課題があげられる。また、全ての項目に共通として、実機を模擬した最適な実験法が必要なことは明白であり、実験方法の開発、検討が共通的課題としてあげられる。以上のことから、以下に示す4つの具体的項目を技術課題して取り上げることとした。
① 腐食環境評価技術
② 腐食カニズム
③ 酸化物・イオン種の付着・脱離メカニズム
④ 実験技術

_本節で取り上げるこれらの技術課題は、前章で取り上げた各課題共通する基盤技術であり、深層防護との関連は、各課題における深層防護との関連に準ずる。ここでは、水化学・腐食に係わる共通基盤技術にて取り上げる各技術課題と深層防護との関連について簡単に記載する。

①腐食環境評価技術
_腐食環境評価技術に関しては、基本的には、定常運転時を想定した課題を抽出している。ただし、シビアアクシデントの収束時にも、本課題で取得される評価技術に関して、その基礎知見は活用可能である。

②腐食メカニズム
_基本的には、定常運転時を想定した課題を抽出している。シビアアクシデントの収束時にも、本課題で取得される腐食に関する基礎知見は、適用可能な条件、部位の評価に関しては活用可能である。

③酸化物・イオン種の付着・脱離メカニズム
_基本的には、定常運転時を想定した課題を抽出している。シビアアクシデント時の収束時にも、本課題で取得される付着脱離メカニズムに関する基礎知見は、適用可能な条件、部位の評価に関しては活用可能である。セシウム等のFP等、シビアアクシデント時に放出される酸化物・イオンの付着脱離に関しては、8章で別途記載したためここでは取り上げない。

④実験技術
_基本的には、定常運転時を想定した課題を抽出している。シビアアクシデントの収束時にも、本課題で取得される実験技術に関する基礎知見は、活用可能である。

(A) 現状分析
_上述の水化学・腐食に係わる共通基盤技術に関する4つの技術課題は、水化学に限らず、その周辺研究にも係わる基礎的な技術である。これらの課題項目は、水化学分野だけではなく、他分野との連携が必要とされる課題も多く、学(学術界)が中心となり本共通基盤技術関連の研究を立ち上げ、推進することが望ましい。そのためには、水化学、広くは材料を含めた原子力関連の技術の共通基盤技術としての認知を受けることが必須で、さまざまな機会、場を通して研究の必要性、重要性、緊急性を訴え、その成果が広く他分野にも寄与することをアピールすることが不可欠である。

(1) 腐食環境評価技術
_材料の腐食は、材料と水環境の相互作用によるものであり、そのメカニズム解明や解析において、腐食環境を評価することは非常に重要である。原子炉における腐食環境の評価においては、原子炉固有の事象である水の放射線分解に起因する腐食性分解生成種の濃度分布等が議論の中心であるが、pH、Fe2+イオンの飽和溶解度、導電率等の因子との関連、高温水中でその場測定可能な腐食電位のようなマクロ的な因子についても、表面皮膜の影響、放射線照射の直接的影響等議論が必要である。また、燃料・材料関連の実験に関して、溶存酸素濃度、腐食電位の設定において、最新のラジオリシス情報に基づく水化学条件を設定する必要があり、そのための情報を取得、更新する必要がある。さらに、表面の酸化皮膜や付着クラッドの影響は考慮されていないため組み入れる必要がある。また、プラントでの現象を理解する上では、PWR、BWRといった軽水炉プラントに限定するのではなく、火力発電プラントあるいは化学プラントといった関連分野からのアナロジーも重要と考える。このような広い視点からの議論については、現状では十分に行えているとは言いがたく、他分野との交流も含め幅広い面で、最新技術に関する議論への積極的な参加による情報収集が必要である。一方で、各種実験における水化学条件の標準化が必要である。また、実機を模擬した照射実験は限界があり、実機現象と模擬実験・加速実験をつなぐ理論ツールの構築が必要である。
_高温水化学センサーは、腐食環境評価にとって重要な役割を果たす。しかし、高温水中での水化学その場測定センサーによる測定技術に関しては、開発はされるが、実用にまで至っていない。長期使用に関する信頼性が十分ではなく、破損し、ルースパーツとなる懸念が残されているためである。
_さらに、1F事故後には、放射線照射下にあり、かつ海水、淡水等の多量の不純物イオンが含まれる環境が発生しており、腐食環境評価のみならず、安全性の観点から水素発生評価等への水化学の寄与も重要となっている。

(2) 腐食メカニズム
_腐食には、水溶液中の湿食とガス中の乾食がある。さらに、腐食を定量的に理解し評価するためには、電気化学的なアプローチが不可欠である。SCC発生、進展の抑制技術として採用されている、NMCA等の貴金属添加技術のルーツが燃料電池開発等の触媒にあることからもわかるように、電気化学分野における最新知見の活用は水化学分野における新技術開発の一助となる。
_一方で、炉内では、軽水炉の燃料材料、構造材料は直接・間接的な放射線照射による様々な影響を受け、放射線分解生成種によっても腐食環境が影響を受けるとともに、構造材間の微細な隙間構造、表面に付着蓄積したスケール、冷却水の複雑な流動条件によっても、腐食挙動が異なるため、各条件下での腐食現象の特徴を把握する必要がある。さらに、実験的評価においても、腐食試験環境の把握において、試料水の減温過程において、腐食生成種の濃度・化学形態が変化することが多く、腐食環境を正しく把握することが難しく、上記(1)の課題と連携しながら進めることが重要である。また、隙間形状の影響と隙間内で発生している現象の理解が重要課題の1つとなっており、SCC試験におけるすきま付定ひずみ曲げ(Creviced bent beam、CBB)試験等では、強制的に隙間条件を形成して試験を実施しているものの、その理論付けについては実例を見ないのが実情である。
_また、1F事故後には、海水や流入地下水成分、デブリからの溶出成分等、多様な不純物が混在し、かつ放射線照射下という特殊環境に材料がさらされている。このような複雑環境に対応するには、データの蓄積のみならずメカニズム解明が重要となる。このためには、放射線化学と腐食科学分野の研究者の連携が有効であり、従来から両分野間で連携してきた水化学は重要な役割を果たすことが期待される。

(3) 酸化物・イオン種の付着・脱離メカニズム
_酸化物やイオン種の付着脱離メカニズについては、配管内面への放射性核種の蓄積あるいは燃料被覆管表面でのクラッド、イオンの付着挙動の解明研究が行われている。既往研究より、各材料表面で発生している現象の理解は進んできているが、これらの知見に基づく定量評価に必要な解析手法及び長期予測手法の提案と高精度化が課題として残されている。この課題解決に必要な付着メカニズム、及び機械的な脱離あるいは溶解といった脱離のメカニズムについての知見の取得、蓄積が重要である。同時に、付着している酸化物やイオン種の腐食に及ぼす影響を明確することもまた、重要課題の1つである。一方で、付着物と材料の隙間に代表される微小な隙間部については、直接実験的なアプローチは難しいため、理論評価を含めた間接的評価にならざるを得ないが、微小すき間部での腐食現象の解明には不可欠である。
_また、付着・堆積物の評価は核燃料や材料を取り出しての分析に依存するため、プラント運用中の状態の把握が難しい。実機での状態と分析された状態を橋渡しするための、in-situ測定法の確立あるいは現象の理論評価ツールの確立が必要である。

(4) 実験技術
_模擬実験、加速実験によるデータの取得、蓄積を実施するにあたって、調査対象として設定した因子を実験におけるパラメータとして適切に取り扱える手法で実施することが重要である。そのため、最適な加速実験、模擬実験手法の選定は、上記(1)~(3)項目の実施による、メカニズムと知見の把握により初めて可能となる。また、実機での大スケールかつ照射下での現象に関して、小スケールな実験室レベルでの実験的手法で評価するうえで、模擬性、加速性を把握することは不可欠である。また、近年では、我が国だけではなく世界的に実験炉が老朽化し、その数も減少傾向にある。そのため、実験炉のみではなく、照射施設等を用いた模擬実験技術の重要度が増してきている。一方で、実験炉における実証試験は、メカニズム解明等の基礎研究と実機において発生する(または発生が確認されている)事象との相関を検討するうえで重要であることは疑いなく、実炉運転相当の放射線場を再現可能な実験炉の必要性は日本国内のみならず世界的にも高いため、将来的展望として新規実験炉の建設には水化学分野としても期待が大きい[7.1.1-2]

(B) 水化学・腐食に係わる共通基盤技術開発の研究方針と課題
_実験室での腐食、電気化学、コロイド化学、放射線化学等に関する基礎研究から実機実証までをつなげていくことが、水化学の共通基礎基盤の重要な役割である。加えて、分野を超えて、計算、模擬実験から取得される知見、情報を統合する必要がある。この統合プロセスにおいて、模擬実験、照射実験と計算科学をベースに体系化を実施することが望ましい。そのためには、水化学、腐食、燃料分野の計算科学的評価と模擬実験、照射実験のさらなる推進が不可欠である。導入シナリオを図7.1.1-1に、基礎から実機へのつながりの考え方を図7.1.1-2に示す。また、技術マップを表7.1.1-1に、各課題の相関を図 7.1.1-3に示す。
_以下に、各項目の研究方針を示す。

(1) 腐食環境評価技術
_原子炉一次冷却系では、(2)の③に詳述するように、放射線照射が直接的あるいは間接的に腐食環境に影響を与える。この現象のメカニズム解明と照射影響軽減対策立案には、これら影響度を定量化する必要があり、実験室内で再現実験を可能とする技術の確立が急務である。そこで、腐食環境評価技術を水化学の中枢に位置づける。腐食環境の定量化はラジオリシスモデルによる理論的評価と、高温水化学センサーを用いた実験的な評価を両輪として展開する。構造材・燃料被覆材と水化学との相互作用解明の基盤技術として、プラント冷却系全体及び隙間部等の局所的な腐食環境を定量化する。また、原子炉固有の課題である放射線照射の直接及び間接効果の影響評価を重点的に盛り込む。
① ラジオリシス解析による照射効果の定量評価
_高温水のラジオリシスにおいては、G値、2次反応に関して、継続的な研究によるデータの更新がされている。一方で、燃料と材料関連の従来研究では、古いラジオリシスパラメータを用いた解析情報に基づく水化学条件を採用していた。これは既往研究で課題となっている実機と実験室の乖離の要因の1つになっていると考えられる。そこで、ラジオリシス解析に関するG値、2次反応に関するデータをさらに高精度化するととともに、これまで想定していなかった多様な不純物を含む系に関して解析可能となるよう基礎データを拡充する。これにより、実機環境をより正確に模擬した条件でのメカニズム研究が可能になるとともに、実機の水質予測技術の高精度化にも資する。

② 沸騰あるいは過飽和析出によるクラッド付着・蓄積及び析出物からのイオン種溶出による局所水質評価
_実際の材料表面は、表面酸化皮膜に覆われており、さらに流入鉄イオンの再析出等による酸化鉄粒子に覆われている。よって構造材表面では、酸化鉄粒子の生成、剥離、再溶出等が発生しており、これらは環境の影響を強く受ける。さらに、これらの粒子の再溶出により発生したイオンが、材料表面に蓄積し、表面近傍の水質を変化させる。したがって、構造材料や燃料表面での腐食現象を議論するにあたり、表面近傍でのイオン種のふるまいを把握することは重要である。そこで、表面近傍における材料及び付着物からの溶出イオン種の、表面近傍への蓄積、さらにそれによる表面局所水質への影響メカニズムを解明し、解析式を提案する。さらに、イオンの輸送等を考慮したマルチフィジックス解析法を提案する。

③ 隙間部、付着クラッド・酸化皮膜と母材界面等の局所水質評価
_実際の材料表面は、酸化皮膜に覆われており、さらに流入鉄イオンの再析出等による酸化鉄粒子に覆われている。腐食や付着に伴う、材料や燃料の損傷はこの皮膜や付着粒子の下で発生している。さらにその進展は亀裂内のような微小隙間構造を考慮して評価する必要がある。また実機材は放射線環境にさらされているため、局所構造と放射線環境が重畳した局所水質となっている。そこで、放射線を考慮した、隙間部やクラッド・皮膜/母材界面における局所水質評価手法を確立し、解析手法を構築、高度化する。また、ECPにおいては構造材表面の酸化皮膜の影響を考慮したうえで評価する必要があることから、ECPへの表面皮膜の影響メカニズムを解明し、それを取り入れたより高精度化したECP評価手法を提案する。

④ 腐食環境のその場(in-situ)測定法の確立
_IASCC等の高い放射線場で発生する事象を理解するには、照射下試験は有用な手段の一つであるが、試験条件の1つである照射下水質の把握が重要である。各種の高温水化学センサーに関しては、実験室系での採用は増加しつつあるが、実機の採用実績があるものとしては、主としてBWRの水素注入運転時に、適正な水素量を決めるために採用された腐食電位センサーのみである。特に、実験炉によるインパイルループ実験等の放射線直接照射下試験では、腐食環境のその場での把握に腐食電位の測定が不可欠であるが、採用される参照電極は放射線照射の影響を受け、特に高線量の中性子照射下ではセンサー寿命が短いことが課題となっている。そのため、放射線の影響を受け難い参照電極の開発とその実証はインパイルループ実験に先立って実施することが必要である。そこで、放射線照射下にある高温水の腐食環境その場測定手法を確立するための基礎検討を行い、手法を提案する。さらに、高線量の中性子照射下で長時間利用可能な水質センサーを提案する。

(2) 腐食メカニズム
_構造・燃料被覆材料と水化学との相互作用解明の基盤技術として、材料の腐食、溶出、酸化物形成のメカニズムを解明し、定量化する。全面腐食と同時に隙間部、亀裂先端部等の局所腐食についても、現象を明らかにするとともに、原子炉固有の課題である放射線照射の直接及び間接効果を盛り込む。酸化皮膜の形成、性状解析に重点を置き、材料研究分野、燃料研究分野の研究者と連携して推進する。
① 腐食速度の温度、pH、酸化種濃度依存性の定量化
_従来使用されている炉内構造材料や燃料材料の高温水中での腐食速度は、重量測定法により測定されたものである。腐食速度の溶存酸素濃度依存性、pH、温度等の環境条件への依存性は、これまでも幅広く取得されてきており、報告例も多い。一方で、隙間内等に代表される局所水質中での材料の腐食速度に関しては、データが不十分であると考えられ、局所水質評価と連携した局所腐食速度の取得等により知見を拡充する。また、局部腐食の発生・進展停止条件の評価も重要であり、データの取得、拡充を行う。さらに、放射線照射下での腐食速度に関しては、データが少なく、今後充実させる。

② 酸化皮膜形成メカニズムと酸化皮膜の腐食への影響の定量化
_高温水中では、材料表面に、緻密な内層とポーラスな外層の2層構造を持つ酸化皮膜が形成される[7.1.1-3]。この酸化皮膜が表面を覆うことで材料表面が保護され、腐食を抑制する。腐食の長期予測のため、この酸化皮膜の影響を定量化したうえで、メカニズムを定式化した腐食解析手法を確立する。また、酸化皮膜の腐食抑制に及ぼす放射線照射影響を明確にする。

③ 放射線照射の腐食及ぼす直接・間接効果の定量化
_放射線照射下では水の放射線分解により、過酸化水素が発生する[7.1.1-3]。よって腐食への照射影響は、照射の直接影響下で発生する腐食と、照射により発生した過酸化水素による間接影響下での腐食に分けて考える必要がある。間接効果に関して、過酸化水素は材料の腐食及びECPへ影響することは以前より指摘されており、過酸化水素の腐食影響に関する研究も進められ、影響メカニズム、溶存酸素との差異においては理解が進んでいる。一方で、直接効果に関しては、材料表面近傍での過酸化水素の湧き出し影響、短寿命ラジカルの寄与、表面保護皮膜への影響等の課題が考えられ、これらのメカニズム解明と定量化を行う。

④ 高温水中あるいは放射線照射下での腐食現象の電気化学的理解
_腐食反応は材料と水化学環境の界面における電気化学反応であり、その理解がメカニズム解明において不可欠である。これまで、高温水中で利用可能な参照電極の開発に加え、電位測定技術、分極測定技術等を用いた腐食メカニズム解明研究が進められている。このメカニズム解明をさらに進めるとともに、高温水中での局部腐食に関する電気化学反応を解明し、さらに放射線の電気化学反応に及ぼす影響も明確にする。

⑤ かい離水素の拡散・水素化物形成
_PWSCCにおいては、水素が重要な環境要素の1つとして議論されている[7.1.1-3]。また、燃料に使用されている材料の健全性の議論においても、水素の影響は重要な要素の1つとされている。特にかい離水素の材料への取り込みと、材料内での水素化物生成のメカニズムを解明する。水素の材料への侵入や、水素化物形成は、軽水炉分野だけではなくさまざまな産業分野で取り組まれている重要課題の1つであり、他分野と連携しながらメカニズム解明と定量化を進める。また、これらの現象への放射線照射影響も理解する。

⑥ 腐食現象のその場(in-situ)測定法の確立
_炉内で発生する腐食現象の解明において、放射線照射下にある高温水中での腐食現象に係わるパラメータのその場測定は非常に有用であり、その手法を確立する。

(3) 酸化物・イオン種の付着・脱離メカニズム
_構造・燃料被覆管材料と水化学との相互作用解明の基盤技術として、燃料・構造材表面での酸化物の析出・付着・脱離・溶解挙動を解明し、あわせて、析出の腐食挙動への影響を定量化する。
① 沸騰析出あるいは過飽和による濃縮析出
_燃料や材料表面への酸化物クラッドの付着量の長期予測において、沸騰析出や過飽和析出による酸化物粒子の表面への析出量の定量化及びそれに基づく解析式の構築を行う。ホウ素の析出等を議論するにあたり、沸騰析出のメカニズム解明と定量化を行う。

② 高流速部への析出と低流速部への沈積
_酸化物粒子の配管への付着を定量化し、高流速部への析出メカニズム、及び低流速部への沈積メカニズムを解明する。さらに流況と付着、沈澱現象のマルチフィジックス解析手法の確立とそれによる定量的評価手法を確立する。

③ 付着物の固着機構
_付着した酸化物粒子の固着機構の解明は表面のクラッド付着を議論するうえで必要不可欠な情報である。そのため、コロイド化学の知見に基づく議論がされており、一定の理解が得られている。一方、高温水中でのコロイド化学に基づくパラメータの直接測定は報告例が少なく、議論をより深めることで、固着機構の解析的予測手法を確立する。

④ 酸化物とイオンの相互作用
_酸化物粒子とイオンの共存条件下において、イオン種によっては酸化物粒子表面に共存イオンが吸着し、酸化物粒子の挙動を変化させる。そのため、高温水中での酸化物粒子とイオンの相互作用を解明し、高温水中での酸化物粒子のコロイド粒子的挙動に対し共存イオンの影響を考慮した評価手法を確立する。

⑤ 機械的はく離
_流況下等にある材料表面では、付着した酸化物粒子の機械的はく離が発生している。よって、配管等への酸化物の付着量、付着速度の予測に当たり、この機械的はく離を考慮する必要がある。そこで、流れによるせん断力、キャビテーション等の機械的はく離の発生要因を考慮した定量的評価を実施し、表面酸化物付着モデルへと導入する。

⑥ 局所 pH 変化
_酸化物やイオン種の付着挙動においてpHは重要な要因の1つである。とくに表面近傍の局所的なpH変化は影響が大きいため、その影響を定量化する。

(4) 実験技術
_構造材料及び燃料被覆管材料と水化学との相互作用解明の基盤技術として、実機条件を模擬できる実験技術を確立する。腐食挙動に影響する主要因子単独あるいは組合せ効果を適切に再現する実験法、及び加速実験法を確立する。さらに、上記(1)~(3)の成果に基づき、現象再現のための模擬及び加速実験技術確立に資する。
① 照射環境模擬実験法(H2O2浸漬実験)等実験環境標準化
_実機で発生する現象の多くは放射線照射下で起こるが、照射下試験は困難が伴うため、メカニズム研究やデータの充実化においては、照射環境を模擬した実験的手法によるアプローチが必要不可欠である。照射下では水の放射線分解により過酸化水素が発生し、高いECP条件になっている。そのため、照射環境模擬として、溶存酸素濃度を非常に高い条件にし、材料のECPを高く保つ条件で試験を実施することで照射環境を模擬している。一方で過酸化水素を用いた実験例もある。照射環境模擬実験法を標準化することで、照射環境模擬実験のデータにおける、手法、条件に起因するデータのばらつきを抑え、より効果的なメカニズム研究を推進可能となる。そこで、炉内環境を模擬した模擬実験技術に関して、提案し、標準化のための検討を行う。

② SCC 試験法
_SCC試験においては、低歪速度引張試験(SSRT)、CT試験片を用いた亀裂進展試験、意図的に隙間を付与した隙間付定ひずみ曲げ(CBB)試験、単軸定荷重引張試験(UCL)等様々な試験によるアプローチが試みられてきた。これらの試験は、手法の開発、データ取得、メカニズム解明研究が同時に進行する状況であったため、報告間のデータのばらつきが大きく、試験法の標準化が必要な状況であった。このうち、亀裂進展試験及びUCL試験に関しては、腐食防食学会により学会標準(「高温水中における応力腐食亀裂進展試験方法」、「高温高純度水環境におけるUCLを用いた金属及び合金の応力腐食割れ試験方法」)が発行され、比較的統一した試験が可能な状況となっている[7.1.1-45] 。一方で、SCCメカニズム解明においては、応力、材料、環境それぞれの要因の影響を把握するために、各要因の影響に着目した、従来の試験法にとらわれない新しい試験法が必要であり、このような新しい試験法の開発を推進する。

③ 加速試験法
_実機での事象、特に高経年化に係わる事象は、大変長い時間経過とともに進行する現象である。一方実験室内では、実機と同一の時間軸での実験は不可能であるため、加速試験による評価は不可欠である。加速試験法の選定、実験条件の設定を間違えると、実機の現象を正しく再現できないことから、採用した試験法の妥当性評価は大変重要である。そこで、各種現象に関する加速試験法の開発、最適化、高度化を実施するとともにその妥当性評価を行う。

④ 模擬実験と実機挙動の橋渡し
_実験室での模擬実験と実機挙動との間に乖離があることは長年指摘され、解決すべき問題の1つである。この乖離を解消するために、実験炉等より実機に近い条件での基礎試験を行い、模擬実験で得られる知見と実機挙動との差異を検討する。

⑤ 腐食環境のその場(in-situ)測定法の確立
_放射線照射下にある高温水の水化学パラメータのその場測定は、各種基礎研究及び実機の水質管理のどちらにおいても大変有効である。そこで、炉内を模擬した強放射線場で長時間利用可能な腐食環境その場測定法を確立する。

_水化学・腐食に係わる共通基盤技術開発に係わるロードマップを図7.1.1-4に示す。

(C) 産官学の役割分担の考え方
_水化学・腐食に係わる共通基盤技術開発における産官学の役割分担を以下にまとめる。
(1) 産業界の役割

    • 実機データの蓄積とニーズの提示
    • プラント運用上の固有課題の評価
    • 既存技術の高度化
    • 水質管理基準等の整備

(2) 国・官界の役割

    • 長期的戦略の指導的役割
    • 国際間の技術調整 海外水化学管理情報の把握と国内基準への反映
    • ホット施設、照射施設、実験炉を用いた大規模実験の推進
    • 国内自主技術の育成
    • 原子力の将来ビジョンの明確化と夢の創生

(3) 学術界の役割

    • 基礎データ、新知見の発掘と蓄積(共通的・普遍的・永続的研究テーマ)
    • 材料・水相互作用の科学的裏付け
    • 教育・人材の継続的供給
    • 体系化、数式化における指導的役割

(4) 学協会の役割

    • ロードマップローリング
    • 規格標準類策定
    • 共通基盤技術の研究ニーズの発行
    • 人的交流と育成

(5) 産官学の連携

    • 国家全体として力を発揮できるようなシナリオの提示
    • 共通の目標に向かって行く体制の構築
    • 学の水化学への寄与の拡充のための連携

課題調査票

課題名 水化学・腐食に係わる共通基盤技術

マイルストーン
及び
目指す姿との関連

短I. 事故発生リスク低減・更なる安全性向上の実施
_IV.信頼性向上へ向けたプラント技術・運用管理の高度化
_V. 保全・運転の負荷軽減・品質向上
⇒水化学・腐食に係わる各課題に関して、その解決と対応のためには基盤技術を確立させる必要がある中II.既設プラントの高稼働運転と長期安定運転の実現
⇒実験技術等の共通基盤技術の確立により各中期課題の解決に資する長I. プラント全体のリスク極小化
⇒実験技術等の共通基盤技術の確立によりプラントの安全性向上に資する
概要(内容) _構造・燃料被覆材料と水化学との相互作用解明に必要とされる基盤技術を確立する。
1.腐食環境評価技術
_構造材・燃料被覆材と水化学との相互作用解明の祈願技術として、プラント冷却系全体及び隙間部等の局所的な腐食環境を定量化する。さらに原子炉固有の課題である放射線照射の直接及び間接効果を重点的に盛り込む。
2.腐食メカニズム
_構造・燃料被覆材料と水化学との相互作用解明の基盤技術として、材料の腐食、溶出、酸化物形成のメカニズムを解明し、定量化をはかる。全面腐食と同時に隙間部、亀裂先端部等の局所腐食についても、現象を明らかにするとともに、原子炉固有の課題である放射線照射の直接及び間接効果を盛り込む。
3.酸化物・イオン種の付着・脱離メカニズム
_構造・燃料被覆材料と水化学との相互作用解明の基盤技術として、燃料・構造材表面への酸化 物の析出・付着・脱離・溶解挙動を解明し、あわせて析出の腐食挙動への影響を定量化する。
4.実験技術
_構造・燃料被覆材料と水化学との相互作用解明の基盤技術として、実機条件を模擬する実験技術を確立する。腐食挙動に影響する主要因子単独あるいは組合せ効果を、適切に再現する 実験法を明確にするとともに、加速実験法を明らかにする。
導入シナリオとの関連
    • 燃料・構造材料・水化学共通の基盤技術(現象のモデル化には必須技術)
    • 実機での現象の把握及び基礎実験と実機対応との橋渡しに寄与
    • 材料・構造変更等の対応が困難なケースに対しての重要なオプション技術

課題とする根拠
(問題点の所在)

_軽水炉の燃料材料、構造材料は直接・間接的な放射線照射による様々な腐食性生成種によって腐食環境が影響を受ける。また、構造材間の微細な隙間構造、表面に付着蓄積したスケール、冷却水の複雑な流動条件によっても、腐食環境が異なる。 一方で、腐食環境を把握するため、試料水の減温過程において、腐食性生成種の濃度・形態が変化することが多く、腐食環境を正しく計測・把握することが難しい。
_燃料被覆材、燃料材料の表面あるいは隙間構造に蓄積・堆積したクラッド、あるいは酸化皮膜が、腐食を抑制あるいは加速。付着・堆積物の評価は燃料・材料を取り出しての分析に依存するため、プラント運用中の状態の把握が難しい。実機での状態と分析された状態の橋渡しをするための、in-situ測定法の確立あるいは現象の理論評価ツールの確立が急務である。
_燃料・材料関連の実験では、古い情報に基づく水化学条件を採用。照射の直接的・間接的影響を配慮すると、原子炉条件では変更が必要である。実機を模擬した照射実験の制約があることから、模擬実験・加速実験が有効である。
現状分析 (1) 腐食環境評価技術

    • 腐食環境に及ぼす照射効果はラジオリシス理論評価手法で定量化可能
    • 隙間部、付着スケール下での腐食環境評価には新しいアプローチ要
    • 腐食環境を直接把握可能な高温水化学センサーの開発が不十分

(2) 腐食メカニズム

    • 腐食に及ぼす照射効果は、ラジオリシスによる腐食環境の変化を通しての間接効果と酸化皮膜への照射効果等直接効果が重畳
    • 隙間部、付着スケール下での局所腐食挙動評価への電気化学的手法適用性は検討要
    • 腐食挙動への酸化皮膜の影響は、皮膜物性に支配される

(3) 酸化物・イオン種の付着・脱離メカニズム

    • 燃料表面での沸騰析出に関しては、半理論モデルが提案されているが、付着力については、決定的な要因は未解明。サブクール沸騰下の付着については十分な理論武装未確立
    • 隙間部への濃縮現象、サブクール沸騰下の付着現象模擬実験。データ数が限られており、更なる研究要
    • 理論評価のためのデータベース強化要

(4) 実験技術

    • 腐食関連事象の水化学指標としてのECPの限界
    • 基礎的な現象把握・定量化のための実験と実機調査の位置づけ明確化要
    • 水化学側からの理論的なアプローチが不足
    • 基礎実験におけるin-situ計測(高温センサ)技術の確立要

期待される効果
(成果の反映先)

_精度の高い実験のためのインフラ整備と体系化により、研究の効率の向上が期待される。
_材料挙動、燃料表面の現象に対する理解が深まり、対策立案に資することができる
実施にあたっての問題点
    • 燃料、材料研究と協力・協調
    • 新しいアイディアに富んだ実験技術の開拓
    • 現象を支配するキーパラメータの摘出と確認
必要な人材基盤 腐食科学、コロイド化学、放射線化学等に関し、実験技術開発、評価等が実施可能な人材

他課題との相関

水化学:腐食生成物の発生、放射化、蓄積の各プロセス現象の定量化
燃料:照射下の被覆材の腐食現象の定量化
構造材:照射の直接・間接効果を含む構造材の腐食現象及びSCCの定量化水化学・腐食に係わる共通基盤技術に関しての他RM等との相関は、6章及び7章にある各個別課題に準ずる。

実施時期・期間

着手は短期。継続して充実化