6.2.1 被覆管・部材の腐食/水素吸収対策

_燃料被覆管・部材の腐食/水素吸収を設計基準範囲内に維持するための通常運転時の水質管理は、プラントの安全性維持に必要な深層防護のレベル1「異常・故障の発生防止」に該当する。また、通常運転時の状態を逸脱した場合の対応はレベル2「異常・故障の拡大防止」に該当する。さらに、シビアアクシデント前後における被覆管のZr-水反応、炉心溶融後の水素発生挙動、炉心溶融に伴うFPの核種、性状、放出・移行挙動、及びATF等改良型燃料の被覆管・部材の耐食性向上には水化学の関与が想定されることから、レベル4「設計基準を超す事故への施設内対策」に該当する。一方、設計基準事故やシビアアクシデント発生時のサンプスクリーン、及び事故時の燃料プール内の燃料の腐食/水素吸収対策に果たす水化学の役割は殆どないため、レベル3「事故の影響緩和」には該当しない。
_実機に新たな水化学技術を導入する際、燃料健全性評価に対し、想定される燃焼度を包絡した照射試験による評価手法が用いられてきた。これに対し、1F事故後、国内の多くの照射試験炉の廃炉が決定され、当面は新設の計画もない。このため、日本原子力学会核燃料部会で検討中の『燃料高度化に関するロードマップ』では、新たな燃料評価手法が必要と指摘されている。これは、現象論的(経験論的)健全性評価手法から、メカニズムに立脚した機構論的な健全性評価手法への転換の重要性と必要性を示しており、核燃料-水化学の境界領域では、燃料被覆管・部材の腐食、及び腐食に密接に関連した水素吸収のメカニズム解明とそれに基づくモデル開発のニーズがあるといえる。
_腐食/水素吸収メカニズムに立脚したモデルが開発され、それを包含した機構論的評価手法が確立されれば、水化学高度化やATF等の改良型燃料の被覆管の開発に対し、実証的な健全性評価手法の全部、または一部を省略でき、加えて加速試験による評価も可能となる。これにより、現行炉のみならず、次世代炉の燃料開発や燃料健全性評価に係わる時間とコストの削減に繋がるものと考えられる。また、このような評価手法を標準とすることで、公開性・透明性のある安全審査を迅速に行うことが期待される。さらに、構築したモデルや健全性評価手法を国際標準とすることにより、我が国の燃料開発や水化学高度化に対する国際競争力の強化に繋がる可能性がある。このためには、国外動向を見極めつつ、モデル構築と水化学影響を考慮した機構論的評価手法を駆使した燃料開発を、産官学連携により効率的に行う必要がある。このアプローチは当該分野の嚆矢となるものと考える。
_国内の軽水炉においては、プラントの安全運転と事故時対応が喫緊の課題であり、核燃料分野においては、事故時の更なる安全性向上に向け、FP放出低減/温度上昇抑制ペレットの開発と専用の通常時材料劣化低減被覆管の開発が加速されるとともに、事故時(LOCA、Post-DNB)高温酸化劣化抑制部材(被覆管/集合体)やATFの開発と実機への早期導入が検討されている。また、『燃料高度化に関するロードマップ』の中では、従来の軽水炉利用高度化(出力向上、最適運転サイクル対応)及び燃料高度化(高燃焼度化、MOX)もプラント運用のオプションとして位置づけられている。
_一方、水化学分野では、2011年3月の1F事故前は、水化学の高度化は主に構造材料と燃料の健全性維持・向上や線源強度低減等を目的に実施されてきた。事故後は、先行する海外事例を参考に、高経年化対応、線源強度低減に向けた新たな水化学技術の開発が計画されている。
_燃料被覆管の腐食は、ジルカロイ合金と水との反応により生じた水素がジルカロイ合金中に取り込まれ生じる。ジルカロイ合金中にNb等の微量元素を添加し、結果的に表面酸化皮膜を介しての水素の拡散を抑えているが、水素取り込み抑制のメカニズムについては未だ定説がない。
_また、燃料被覆管/冷却水界面は水化学の影響を大きく受ける。さらに、MOX燃料の採用等によりラジオリシスが変化する可能性もある。このことから、燃料被覆管・部材、及び運転管理が変更したとしても、燃料被覆管・部材への酸化物付着の制御により線源強度の上昇を抑制しながら、燃料被覆管・部材の耐食性を確保する役割が水化学に新たに求められるようになった。このため、従来、先行照射によって実証してきた燃料被覆管・部材の腐食や水素吸収特性について、そのメカニズムに立脚したモデルを構築し、様々な運転条件や水化学環境における使用範囲を合理的に(迅速かつ精度良く)評価できる手法を確立することが重要となった。
被覆管・部材の腐食/水素化に関する現状、研究方針と課題、及び産官学の役割分担について以下に述べる。

(A)現状分析
_ジルコニウム合金の一様腐食は燃焼度に比例することは判っているが、時間に対して単調増加せず変極点をもって急増するブレーカウェイ現象[6.2.1-1] の原因や水素吸収機構については諸説あり、理解の統一に至っていない。水化学が被覆管と部材の腐食に影響することは明らかであるが、影響因子の定量的影響や重畳効果はほとんど判っていない。また、ジルコニウム合金中に吸収される水素の大半は、腐食によって生成すると考えられているが、吸収機構については諸説あり、その複雑さゆえに統一的理解に至っていない。

(1) 被覆管・部材の腐食/水素吸収メカニズムの解明
_新規に開発した燃料の健全性評価は、現在、先行照射等の試験結果に基づく評価(現象論的評価)が主体となっている。燃料被覆管の耐食性/水素吸収特性と水質因子との相関を含め、ATF等の改良型燃料のみならず現行燃料に対しても、被覆管・部材の腐食/水素吸収性に係わる統一的な機構論は明確になっていない。また、水質変更の際、燃料被覆管への影響も考慮すべきであるが、水化学の変更がATF等の改良型燃料の被覆管腐食にどのように作用するか明確になっていない。燃料被覆管・部材の腐食/水素吸収特性は、プラント、水化学、燃料の材料因子が複雑に関与しており、これら因子を結び付ける統一的なモデルの構築に着手できていない。
_実施にあたっての問題点としては、本課題は原子力安全とも大きく関連することから、課題解決には緊急性を要する。

(2) 被覆管・部材の腐食/水素吸収対策技術の開発
_ATF等の改良型燃料の被覆管・部材の腐食/水素吸収メカニズムに立脚した水化学対策技術は確立されていない。対策技術の開発にあたり、燃料被覆管の腐食/水素吸収に及ぼす水質やプラント運転に係わる因子等について、現知見を下記に示す。

① 燃料被覆管の腐食/水素吸収に関する評価手法の確立
_現行の燃料被覆管の腐食/水素吸収に関する評価手法では、想定する燃焼度を包絡した照射試験が不可欠であり、専用設備の整備等過大な時間及びコストが必要となる。

② 燃料被覆管の腐食/水素吸収挙動への水環境中水素の影響評価
_ジルカロイ腐食量に対する溶存水素の影響については、1960年代の古いデータ[6.2.1-2]は存在するものの、比較的最近の、かつ詳細なデータが不足している。

③ 水化学高度化の影響評価(溶存水素最適化、pH管理最適化、亜鉛注入、NMCA、新SCC対策技術)
_ジルカロイ-2被覆管への一様腐食や水素吸収に対しては、NMCA(noble metal chemical addition、貴金属注入)、酸化チタン注入、OLNC(on-line noble metal chemical addition、オンラインNMCA)とHWCや亜鉛注入を併用した場合においても、その影響は認められていない[6.2.1-3 6.2.1-4 6.2.1-5 6.2.1-6]
_材料やプラントの既取得データを基に、フィッティングにより水化学の影響を評価している。例えば、米国EPRIのB. Chengらは、Li濃度、熱流束、照射、水素化物加速因子等を取り込んだ酸化膜厚さ予測モデルを提案している[6.2.1-4]。しかしながら、依然として新たな水化学に対するデータやデータベースが不足している。
_一方、国内のプラントでは、水化学の変更に伴い、定期検査時に燃料被覆管の酸化皮膜厚さを計測する場合がある。しかしながら、計測の労力と費用削減の観点から、データベース等の整備やモデルの構築が望まれている。

④ 軽水炉利用高度化等による影響評価
_軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)に伴い、燃料被覆管の腐食に影響する水化学因子の特定、影響度について明らかになっていない。また、プラント状態、水化学、核燃料分野をまたぐ横断的な評価法も存在しない。

⑤ 水化学を利用した燃料健全性維持・向上策の検討
_PWRでは、燃料被覆管・部材の腐食低減策にはリチウムの低減が好ましいが、サイクル初期ではほう素濃度が高いため冷却系のpHが低下し、線源強度低減及びプラント材料健全性の点からは好ましくない。このため、濃縮10Bの適用、またはカリウム(K)等、リチウム(Li)に代わるpH調整剤の検討が進んでいる[6.2.1-7]。被覆管の腐食はpHが11.5を超えると加速される[6.2.1-8]。影響はリチウム濃度が20~30ppm程度以上の場合、ジルカロイ被覆管表面の酸化皮膜内にリチウムが取り込まれ、腐食を加速する[6.2.1-9]。このとき酸化皮膜中のリチウム濃度は50~100ppm程度であり、照射場における表面酸化皮膜中のリチウム濃度は15~115ppm程度と報告されている[6.2.1-10. 6.2.1-11]6Li(n、α)3H反応により生成した水素のジルカロイ合金中への取り込みも想定されるが、生成する水素量は微量であり、その影響については不明である。
_米国の一部のPWRでは24カ月運転を採用している。この場合、サイクル初期は炉心反応度制御(ケミカルシム)を適切に管理するため、ほう素濃度を13か月運転時の比べ高く維持する必要があることから、添加するリチウムを6~7ppmに高める必要がある [6.2.1-12]。一方、カリウムはリチウムに比べ燃料被覆管腐食に及ぼす影響が小さいことに加え、リチウムの資源量の制約から、近年、代替剤としてKOHの代替適用が検討されるようになってきた。しかしながら、カリウムは運転サイクル中にも添加する必要があることから、10B(n、α)7Li反応により生成するリチウムとの共存により、浄化プロセスやpH管理が複雑化することへの対応等、課題解決が残っている。
_BWRでは、構造材料の腐食抑制を目的とした水化学の導入に際し、燃料被覆管の腐食に及ぼす影響評価も行っている。しかしながら、PWR、BWRとも、燃料被覆管に対する腐食抑制対策についての具体的な検討は十分でない。

⑥ 燃料腐食モニタリング技術開発
_オンサイトでの追加検査は大掛かりになる傾向があり、腐食モニタリングデータの拡充の上では障害となっている。

⑦ 水素分析簡便化技術開発
_超音波探傷(UT)による支持格子への適用検討例はあるが、簡便な水素分析手法はない。

⑧ オンラインクラッド付着モニタリング技術開発
_現状、確立されたオンラインモニタリング技術はない。

(3) データや評価技術の検証
_ATF等の改良型燃料を含め、被覆管・部材の腐食/水素吸収と水化学との相関に係わるデータの整備や評価技術は確立されていない。

(4) 被覆管・部材の健全性評価に係わる規格基準の策定
_ATF等の改良型燃料を含め、被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が及ぼす影響に関する最新知見に基づいた管理項目等を原子力学会指針に規定している。

(B)研究方針と実施にあたっての問題点
_今後、導入が計画されているATF等の改良型燃料に対し、被覆管・部材の腐食/水素吸収対策を講じることにより、プラントの安全性・効率、公益性のさらなる向上に大きく貢献できる可能性がある。現状では、実機の現象と試験結果とが一致しない場合があることから、先行照射等の試験結果に基づく評価(現象論的評価)の依存度が大きい。腐食/水素吸収メカニズムに立脚したモデルが開発され、それを包含した機構論的評価手法が確立されれば、水化学高度化や燃料被覆管材料の改良等の変化に対し、実証的な健全性評価手法の全部または一部を省略でき、加えて加速試験による評価も可能となる。このようなアプローチは、現行炉のみならず、次世代炉の燃料開発や燃料健全性評価に係わる時間とコストの削減に繋がる。
_また、腐食/水素吸収モデル及び健全性評価手法を標準化することにより、安全審査にも利用でき、維持管理(検査・取替)の合理化と併せ、プラントの公益性を高めることに寄与できる。このためには、産官の協調の下に標準モデルを構築していくことが不可欠である。メカニズム解明については学の協力も必要不可欠であり、このようなスキームをもってモデルを開発していくことが重要であり、実効性も兼ね備えると考えられる。
_実施にあたっての課題全体の問題点としては、原子力安全とも大きく関連することから、課題解決には緊急性を要する。また、研究開発のための資金確保が必要である。
_以下に研究方針と課題を示す。

(1) 被覆管・部材の腐食/水素吸収メカニズムの解明
① 従来知見の整理
_クラッド付着・剥離挙動を定量的かつ正確に把握するため、従来の照射後試験等の調査結果、国内外のプラントデータやラボデータを含め、従来知見を整理する。

② 燃料被覆管・部材の腐食/水素吸収メカニズムの解明
_燃料被覆管・部材の腐食/水素吸収挙動は、水化学環境因子と熱水力因子等が複合する事象であり、これを適切に制御するには、燃料被覆管・部材の腐食/水素吸収挙動に及ぼす水化学因子の効果・影響を定量化した上で、メカニズムを解明する必要がある。

(2) 被覆管・部材の腐食/水素吸収対策技術の開発
① 燃料被覆管・部材の腐食/水素吸収モデルの構築
_これまで燃料被覆管・部材の腐食挙動は、水蒸気酸化雰囲気下における被覆管・部材の酸化試験結果を基に、被覆管材料中の不純物や欠陥等に起因する酸化モデルが検討され、水化学等の環境因子の影響はモデルには十分反映されていなかった。このため、試験研究等により、温度、水分解生成物(ラジオリシスにより生成する水素、過酸化水素、酸素等)、炉水添加物、炉水中不純物、酸化物の種類(化学組成、化学形態)と付着量、放射線の直接的影響を定量化しつつ、既存の被覆管酸化モデルの改良・高度化を進める必要がある。

② 水化学改善による燃料被覆管・部材の腐食/水素吸収対策技術の開発
_水質面からの新たな対策を施すには燃料被覆管への影響を考慮する必要がある。このためには、燃料被覆管の耐食性・水素吸収特性と水質因子との相関の明確化が求められる。

(3) データや評価技術の検証
_ATF等の改良型燃料の被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化に起因した破損、異常や事故に至ることがないよう、データや評価技術を検証する。
_燃料被覆管の腐食/水素吸収モデルの開発にあたっては、照射試験炉や実機を活用し、評価結果と実機現象との整合性を確認する必要がある。また、ATF等の改良型燃料を含め、被覆管・部材の健全性維持に対する水化学改良策の有効性と再現性をチェックしながら、モデルや評価手法を検証する必要がある。必要に応じ評価手法を見直すことも重要である。国外を中心に照射試験設備を有効利用するとともに、燃料被覆管・部材の健全性と損傷に関するデータベースを構築・拡充することにより、ラボデータと実機現象との乖離を小さくし、構築したモデルや評価技術の検証を合理的に行う必要がある。
_また、評価の高速化と精緻化に向け、簡便かつ高精度な燃料被覆管・部材腐食モニタリング技術、水素分析簡便化技術、オンライン酸化物モニタリング技術、ならびにECPや光電気化学等のモニタリング技術等の開発やラジオリシスモデルの精緻化を図る必要がある。

(4) 被覆管・部材の健全性評価に係わる規格基準の策定
_ATF等の改良型燃料の被覆管・部材の腐食/水素吸収モデルを活用していくには、安全審査との適合性を図る必要がある。予防保全としてのモデルの有効性を、各種試験やモニタリング等により検証する。また、燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることを防ぐことを目的とし、標準化に適した水化学管理技術を日本原子力学会の水化学管理指針に取り入れる。さらに、燃料被覆管・部材の健全性に係わる最新知見に基づき、必要に応じ水化学管理指針の管理項目等の設定値を見直す。このためには、産官学が連携して、試験方法や評価方法、モデルの検証方法の標準化を図ることも重要となる。
_腐食/水素吸収モデルの開発、検証、標準化には、水化学分野と燃料分野が協働で進めることが重要かつ合理的であり、以下に示す情報交換体制の整備が必要と考える。

    • 核燃料分野と水化学分野の連携
    • 情報交換・検討の場の設置

(C) 産官学の役割分担の考え方
① 産業界の役割

    • 被覆管・部材の腐食/水素吸収評価手法の開発・高度化・標準化
    • 被覆管・部材の腐食/水素吸収対策技術の開発・高度化・標準化
    • 被覆管・部材の腐食/水素吸収に及ぼす環境因子の影響に関するデータ整備・高精度化

② 国・官界の役割

    • データや評価技術の検証
    • 安全規制行政
    • 学協会基準のエンドース・規制基準の整備
    • 基盤の整備(知識、人材、照射試験炉、制度の整備)

③ 学術界の役割

    • 被覆管・部材の腐食/水素吸収メカニズム解明への支援
    • 被覆管・部材の腐食/水素吸収に関する基盤研究(反応機構、速度定数、表面・隙間における照射、被覆管表面の沸騰・流況の影響等)

④ 学協会の役割

    • 規格基準の作成・精緻化

⑤ 産官学の連携

    • 被覆管・部材の腐食/水素吸収メカニズム解明(環境因子の効果・影響)
    • 被覆管・部材の腐食/水素吸収に関する基盤研究
    • 被覆管・部材の腐食/水素吸収メカニズムの解明及び対策立案を担う人材の育成
    • 照射試験炉の整備・利用
    • 照射試験炉を用いた各種モニタリング技術の開発

(D) 関連分野との連携
① 燃料高度化

    • 線源強度低減対策としての水化学の高度化(水化学条件の変更)がATF等の改良型燃料を含む被覆管・部材の腐食・水素化に及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。
    • 軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)が被覆管・部材の腐食・水素化に及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。

② 高経年化対応

    • SCC及び配管減肉の環境緩和対策としての水化学の高度化(水化学条件の変更)が被覆管・部材の腐食・水素化に及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野での連携により、効率的かつ合理的に技術開発を行う必要がある。
    • 軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)とSCC及び配管減肉の環境緩和対策としての水化学の高度化(水化学条件の変更)が重畳する場合、被覆管・部材の腐食・水素化に及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。

図6.2.1-1に被覆管・部材の腐食/水素吸収対策に係わる導入シナリオ、表6.2.1-1に技術マップ、図6.2.1-2にロードマップを示す。

参考文献

[6.2.1-1] 日本原子力学会編, “原子炉水化学ハンドブック”, コロナ社 (2000).
[6.2.1-2] E. Hillner, “Hydrogen Absorption in Zircaloy during Aqueous Corrosion, Effect of Environment”, WAPD-TM-411 (1964).
[6.2.1-3] R. L. Cowan, “BWR Water Chemistry…A delicate Balance”, Proc. Int. Conf. on Water Chemistry of Nuclear Reactors System 8, p.97-102 (2000).
[6.2.1-4] B. Cheng et al., Proc. Int. Meeting on LWR Fuel Performance, Paper 1069 (2004).
[6.2.1-5] Y. Ishii et al., “The Effect of TiO2 on Corrosion on Behavior of Zircaloy-2 Fuel Cladding”, Proc. 2005 Water Reactor Fuel Performance Meeting, Paper 1100 (2005).
[6.2.1-6] S. E. Garcia and C. J. Wood, “Recent Advances in BWR Water Chemistry”, Proc. Int. Conf. on Water Chemistry of Nuclear Reactors System 2008 (NPC’08), Paper L04-1 (2008).
[6.2.1-7] Lena Oliver et al., “Westinghouse VVER Fuel Experience and Fuel QUALIFICATION Need for INTRODUCING KOH in PWR”, Proc. 21st Int. Conf. on Water Chemistry in Nuclear Reactor Systems (2018).
[6.2.1-8] E. Hillner, “The Effect of Lithium Hydroxide and Related Solution on the Corrosion Rate of Zircaloy in 680oF Water”, WAPD-TM-307 (1962).
[6.2.1-9] F. Garzarolli et. al., 1989 IAEA Meeting, Portland (1989).
[6.2.1-10] H. Stehle et. al., ASTM STP 824, p.483-506 (1984).
[6.2.1-11] P. Billot et. al.、 ANS/ENS Meeting, Avignon (1991).
[6.2.1-12] J. N. Iyer et al., “ZIRLOTM Clad Fuel Performance in Simultaneous Zinc and Elevated Lithium Environment”, Proc. of Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Paper L13-3 (2008).

課題調査票

課題名

核燃料被覆管の健全性維持

マイルストーン
及び
目指す姿との関連

短Ⅴ. 保全・運転の負荷軽減・品質向上
⇒自主的安全性向上の効果的・継続的な取り組みにより、保全・運転管理の高度化を図る必要がある。さらに、安全性向上を図りながら、我が国の原子力発電所従事者の被ばく量を低減する取組を行う必要がある。中Ⅱ. 既設プラントの高稼働運転と長期安定運転の実現
⇒電力安定供給性かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期安定運転が必要となる。

概要(内容)

(1) 被覆管・部材の腐食/水素吸収メカニズムの解明
_通常運転時の水質変化が燃料被覆管・部材の腐食/水素吸収性に影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、燃料被覆管・部材の腐食/水素吸収性に及ぼす水質変更の影響を機構面から明らかにする。対象とする被覆管は従来材に加え、事故耐性燃料も含む。(2) 被覆管・部材の腐食/水素吸収対策技術の開発
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、燃料被覆管・部材の腐食/水素吸収対策を検討する。(3) データや評価技術の検証
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、データや評価技術を検証する。

(4) 被覆管・部材の健全性評価に係わる規格基準の策定
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることを防ぐことを目的とし、標準化に適した水化学管理技術を学会指針に取り入れる。また、燃料被覆管・部材の健全性に係わる最新知見に基づき、必要に応じ水化学管理指針の管理項目等の管理項目等の設定値を見直す。

導入シナリオとの関連

水化学による燃料被覆管・部材の腐食/水素吸収対策技術の開発による核燃料の健全性維持

課題とする根拠
(問題点の所在)

水化学RMと深層防護との関連付けの検討結果を参照

現状分析

(1) 被覆管・部材の腐食/水素吸収メカニズムの解明
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に及ぼす水質変更の影響に関する統一的な機構論は明確になっていない。(2) 被覆管・部材の腐食/水素吸収対策技術の開発
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収メカニズムに立脚した水化学対策技術は確立されていない。(3) データや評価技術の検証
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収と水化学との相関に係わるデータの整備や評価技術は確立されていない。

(4) 被覆管・部材の健全性評価に係わる規格基準の策定
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が及ぼす影響に関する最新知見に基づいた管理項目等を原子力学会指針に規定している。

期待される効果
(成果の反映先)

    • 原子力発電所の高稼働運転における核燃料の健全性維持及び環境負荷軽減が可能となる。
    • 燃料等の炉心構成要素の高度化や、原子炉の運転条件が見直された場合においても、運転上の制限を遵守し安全余裕を確保した状態で原子炉の運転が可能となる。

実施にあたっての問題点

課題全体の共通問題として下記がある。

    • 原子力安全とも大きく関連することから、課題解決には緊急性を要する。
    • 研究開発のための資金確保が必要である。

必要な人材基盤

(1)    人材育成が求められる分野

    • 水化学、状態監視技術

(2)    人材基盤に関する現状分析

    • 事業者においては、現在導入している状態監視技術に関する知識・技能を有した人材の育成が行なわれてきた。
    • メーカでは原子力設備の海外輸出等を通じて、必要な技術開発にかかる人材の育成を行っている。
    • 大学等では、共同研究やインターンシップ等により、人材育成や人的交流を図ってきた。
    • 水化学技術は、原子力発電所の保全のみならず、リスクの概念を併用すれば、安全の確保の基本となる技術の一つであり、必要な人材基盤を継続して確保していくことが重要である。今後も人材基盤を維持していくためには、大学等の教育段階から優秀な人材を集め、かつ、人材を計画的に育成していくとともに、実際に炉心設計、運用管理の経験を積んでいくことが必要である。
    • 海外の実用化技術の反映にとどまらず、その改良をもって、更なる原子力安全に役立つ運用管理技術を国際的に展開できる人材を育成し、活躍してもらうことが必要。
    • 特に海外で豊富な実績を有する解析手法等については、その迅速かつ円滑な導入を促す仕組みの充実(国際共同研究、国際会議、人的交流等の活性化等)。

(3)    課題

    • 必要とされる人材規模は、原子力発電に関する国の方針に依存し、これに対応して、計画的かつ継続的な人材確保が必要である。
    • 1F事故後の原子力プラントの長期停止により、実際に経験を積む場が損なわれている。
    • 優秀な人材を惹きつけるという意味において、1F事故とそれに続く原子力プラントの長期停止は、若い世代の原子力離れを招いている。

他課題との相関

    • 「炉心・熱水力設計評価技術の高度化」(ロードマップ)
    • S111_d32:状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
    • M107_d38 建屋構造・材料の高度化
    • S111M107_d36:高経年化評価手法・対策技術の高度化
    • M107_d25:運転性能の高度化(事象進展抑制、停止機能、L/F等)
    • S103_b07:廃棄物長期保管に向けた健全性評価技術、管理技術の高度化
    • M106_c01:計測技術・解析技術の高度化

実施時期・期間

中期(2030年)

実施機関/資金担当
<考え方>

産業界/産業界
_事故耐性燃料を含む被覆管・部材の腐食/水素吸収メカニズムの解明、被覆管・部材の腐食/水素吸収対策技術の開発、データや評価技術の検証等に必要な技術開発を実施
<考え方>

    • 電気事業者は、事業主体としてプラント要件を取り纏めるとともに、プラントへの適用性評価を行う。
    • メーカは、プラント設計を熟知していることから、具体的な設計とプラントに合った技術開発を行うとともに、電に事業者が実施するプラントへの適用性評価を支援する。
    • 研究機関は、技術開発に必要な要素技術を開発する。
    • 大学は、技術開発に必要な要素技術を開発する。
    • 実施主体が資金担当となることが適当と考える。

原子力規制委員会/原子力規制委員会
(必要に応じ、規制の枠組みの整備、技術評価)
<考え方>

    • 電気事業者は、新規制基準及び軽水炉安全技術・人材ロードマップに則り、事業主体として安全性向上に努める。
    • 電気事業者は、事業主体として保全の信頼性向上に努める。
    • メーカは、必要な技術開発に努める。
    • 原子力規制委員会は、電気事業者のニーズを踏まえて規制基準及び導入の枠組みを定め、技術評価を行う。
    • 実施主体が資金担当となることが適当と考える
    • 原子力規制委員会が規制の観点からが主体となる事項について資金担当となることが適切。

産業界・学協会/産業界
被覆管・部材の健全性評価に係わる規格基準の策定

    • 産業界(電気事業者、メーカ)が主体となって核燃料の健全性維持に必要な水化学技術の高度化を図る。
    • 学協会は、核燃料の健全性維持及び付随して必要となる水化学技術に係わる規格基準等について検討を行う。
    • 原子力規制委員会は、核燃料の健全性維持及び付随して必要となる水化学技術に係わる規格基準を整備し、技術評価及び認可を行う。
その他

 

6.2 燃料の高信頼化

_2011年3月に発生した1F事故の教訓を踏まえ、研究開発ロードマップの策定の際には、深層防護の考え方に基づき、異常・故障の発生防止と事故への拡大防止、事故の影響緩和、設計基準を超す事故への施設内対策等、外部環境への影響を考慮したレベルに応じ、原子力発電所の安全性向上に向けた技術を開発していくこととなった。
_2018年現在、PWRを中心に再稼働が進んできたが、核燃料分野においては、1F事故を契機に、FP放出低減/温度上昇抑制ペレットの開発と通常時材料劣化低減被覆管の開発が加速されるとともに、事故時(LOCA、Post-DNB)高温酸化劣化抑制部材(被覆管/集合体)や事故耐性燃料(Accident Tolerant Fuel、以下ATF)の開発と実機への早期導入が求められるようになった。
_新たな水化学技術を導入する際には、現行燃料の被覆管や部材の腐食対策及び水素吸収特性に及ぼす水化学の影響の有無を事前に評価しておく必要がある。さらに、上記の改良型燃料の導入に際しては、被覆管や部材の材質変更に及ぼす水化学の影響を事前に評価しておく必要がある。加えて、被覆管表面へのクラッド付着に起因するCIPS(Crud Induced Power Shift)あるいはAOA(Axial Offset Anomalies)、以下、CIPSと表記)に対しても、現行及び改良型の燃料被覆管を対象に、水化学の影響の有無を事前に評価しておく必要がある。
_本節では、核燃料に対する水化学の影響が比較的大きいと考えられる被覆管・部材の腐食/水素吸収対策及び燃料性能維持(CIPS対策)を取り上げる。

6.1.4 状態基準保全の支援

_将来、炉内や配管の健全性モニタリングが可能になれば、長期にわたる経年劣化の予測評価精度の向上や状態基準保全の充実が期待される。SCCやFAC等の経年劣化事象について材料・応力・環境面から多面的に計測・評価可能なモニタリング技術を開発・適用することは今後目標とすべき研究課題である。
_今回の改訂に当たって、1F事故を踏まえて、深層防護各レベルにおける状態基準保全の支援に係わる研究の係わりを検討し、レベル1から4のいずれにおいても貢献できる課題のあることがわかった。すなわち、プラント構成材料の経年劣化状態を長期にわたり高精度に監視し、損傷リスクに応じた適切な保全を行うことにより設備の信頼性を向上させ、事故発生リスクを低減すること、一次冷却材の水質異常兆候を早期に検出し、プラントの運転管理への適切な判断材料を提供すること、また、格納容器内雰囲気や原子沪水の状況のモニタリング技術高度化を化学の観点から支援することにより、事故発生防止及び拡大防止に貢献していくことができる。
状態基準保全の支援に関する現状、研究方針と課題、及び、産官学の役割分担について以下に述べる。

(A) 現状分析

(1) 環境モニタリング技術の高度化
_「原子力発電施設に対する検査制度の改善について(案)2006年9月原子力安全保安院」や検査のあり方検討会において、高経年化対策の充実のために状態基準保全や運転中を含めた新しい監視・評価技術の導入が有効であるとされ、新検査制度では、回転機器の劣化進展把握のため、振動分析等運転中の状態監視が導入された。米国では既にオンラインメンテナンスの導入が進められ、また、EPRIではタービンに対し、ヘルスマネジメントの概念を導入・活用している。
_震災以後、軽水炉プラントの事故発生リスク低減が、より一層求められている。状態基準保全の支援技術は、運転トラブルの防止、経年劣化対策の確かな実施及び作業環境の改善の観点から、重要度を増している。また、緊急時におけるプラント状態把握のため、キーとなるプラントパラメーターのオンライン収集と状態把握が求められている。
_水質のモニタリング技術は、これまでにも多くの研究開発が行われてきており、プラント水質の維持管理に貢献してきたが、今後、さらに重要性が増すと考えられる。近年、AI技術が飛躍的に発展してきており、これらを導入することでモニタリング技術の更なる高度化が期待される。一方で、原子炉構成材料の経年劣化に関する状態基準保全技術の開発・適用は進んでおらず、炉内各部の腐食環境をモニタし、あるいは、異常予兆を早期に察知し対処する水質管理を確立するには、更なる研究開発が必要である。2011年にBWRプラントにおいて復水器から炉内に大量の海水が流入するトラブルが発生したことから、水質管理システム高度化に当たっては、急激な水質変化にも対応できるようにすることが必要である。
_1F事故においては、原子炉水位計や格納容器雰囲気モニタが十分機能せず、事故の対応に影響を与えた。過酷事故時の原子炉や格納容器内の状況を把握できるモニタリング技術の高度化が求められており、化学の立場からの支援を考える必要がある。

(2) 機材劣化評価手法
_現行は健全性評価等に基づいた時間計画保全(TBM)を中心とした保全となっており、例えば、SCCの点検頻度は過度の保守性に基づいている可能性がある。水素注入等のSCC環境緩和技術を適用した効果を反映した保全を行うことについてのニーズは大きく、炉内水質環境のモニタリング技術確立は重要な課題である。
_これまで、炉内環境のモニタは限られた部位でのみ実施されており、炉内全体については行われていない。炉内各部位の評価は主としてモデル解析を通じ評価している。腐食環境の可視化はこれまで実施されていない。
_プラント構成材の状態基準保全技術の開発にあたっては、水質以外の劣化要因(材料、応力、流況その他劣化モードに応じた他のパラメータ)の影響評価及び実機条件の把握等の課題もある。このため、これら他の劣化要因を含めた精度の高い経年劣化評価技術の開発が状態基準保全技術の開発に不可欠である。実機腐食環境の詳細評価に繋がる研究として、腐食環境評価法の高度化に係わる研究が国の高経年化対策事業として実施されたが、その後継続されていない状況にあり、再構築が必要である。

(3)状態基準保全手法
_状態基準保全に係わる研究事例はまだ少なく、水素注入等のSCC環境緩和技術を適用した効果を反映した保全を行うことを目指して、近年、プラント運転中の炉内ヘルスモニタリングの一つとして炉内腐食電位測定が計画されていたが、震災の影響で中止になっている。今後、研究開発の再構築が必要である。また、実機腐食環境の詳細評価に繋がる研究として、国の事業として腐食環境評価法の高度化に係わる研究が実施された。

(B)研究方針と課題
_SCCやFACに関する水質の影響評価及び実機水質モニタリング/評価技術の開発を推進する。ただし、水化学技術単独では状態基準保全を実現することは難しい。人材RMにおいて、状態監視・モニタリング技術や劣化評価技術高度化の研究課題が取り上げられており、これらと状態基準保全技術開発をリンクさせて研究を進めていく必要がある。
_状態基準保全(及びオンラインメンテナンス)の実現により、損傷リスクに応じた適切な保全方法の展開と合理的な点検が可能となり、経年劣化対策の確かな実施を支えることができる。同時に、適切な情報発信の組み合わせによって見える化に資することができ、安心・安全意識の醸成も期待される。
_このためには、以下に示す技術開発や高度化が必要と考えられる。同時に、これらの技術を保全技術に展開していくためのスキームもあわせて考えていく必要がある。そのためには、安全実績指数(PI)と結びつけて考えることも重要である。

(1)環境モニタリング技術の高度化
構成材料の腐食損傷は、炉水環境が一つの重要な要因となっており、炉内各部位での環境パラメータ(酸化種濃度、腐食電位等)を評価しておくことが必要である。原子炉内各部の水質環境をモニタする方法、及びモニタした結果を可視化し全体を鳥瞰できるような手法を検討する。可視化手法は、実測値のみならずモデル解析結果の可視化も含める。さらに、これらの実測、解析結果の評価を実施し、その精度の確認とその向上を図る。
_プラントの水質状況を迅速且つ的確に把握することによりプラント設備の健全性を評価することが可能になる。水質管理システムに関連しては、これまでエキスパートシステム等、異常予兆診断技術の開発が行われ、一部プラントに導入されている。状態基準保全の支援に用いるためには、多岐にわたるプラントの運転/水質情報を適切な処理や解析を行い、設備の異常兆候等を早期検知して予兆段階で速やかに修復できる高度化された水質管理システムを構築する必要がある。これにより水質面からプラントの状態基準保全を支援することが可能になる。近年、飛躍的に発展しているAI技術等を導入することにより、モニタリング技術の更なる高度化を図る。また、海水リーク等圧力バウンダリーの損傷に伴う急激な水質異常にも対応できるシステムを検討する。
_現状、サンプリングラインを用いた試料採取とその分析結果から炉内水質監視を行っているが、短寿命の放射線分解生成物濃度の把握は困難で、ラジオリシスモデルによる解析により炉水環境を精度良く評価するには至っていない。また、実機構成材料のSCCモニタリング手法も確立していない。オンラインモニタリング技術の確立が望まれる。
_現状の分析機器の信頼性から一旦冷却した水を分析しているため、対象物の形態や状態変化が起こっていることも考えられる。また、一般にサンプリングを介する為に情報の平均化や時間遅れが生じていると考えられる。これまで高温水モニタ技術はIAEA国際共同研究プロジェクト等で実施され、実機へ適用されているものもある。プラントの水質状況を迅速且つ的確に把握することによりプラント設備の健全性を評価することが可能になるため、オンラインモニタによる連続的な系統内の微量不純物・金属・核種のモニタリング技術、高温サンプリングによる放射性腐食生成物(CP)、CP形態等のモニタリング技術を確立し、水質面から状態基準保全を支援する必要がある。また、オンラインモニタリング化を進めることは、現在行われている多くの手動による分析が低減し、作業者の負担低減にもつながる。
_多岐にわたるプラントの運転/水質情報を適切に処理や解析を行い、設備の異常兆候等を早期検知して予兆段階で速やかに修復するできる水質管理システムを構築する。また、一次冷却水中の核分裂生成物濃度やオフガス系等の放射線線量率を監視することにより、燃料破損を早期に検出し、迅速かつ的確な対応が取れるモニタリング技術の高度化を図る。炉心損傷事故の発生時における格納容器雰囲気(放射線線量率、ガス濃度等)モニタや原子炉水位計等の計装機器の機能強化により、損傷状況を的確に把握できるモニタリング技術の高度化に、化学の面から支援する。事故時のヨウ素挙動研究の成果を取り入れつつ、監視技術の高度化を図っていく。

(2)実機材劣化評価手法
現在、BWRでは、炉水環境を緩和する種々の方策が開発されつつあり、一部は実機に適用されている。これらの手法の有効性を評価するために、研究炉を用いた検討が行われるが、種々の制約から実機との対応という点で課題がある。これを解決する方策として実機環境で曝露された材料を直接活用することが考えられる。さらに、このような評価手法が確立できれば、運転中の実プラントの健全性モニタとして適用していくことが可能となる。
_一方、PWSCC発生試験では、試験温度を高めに設定する等、加速試験が一般的に行われ、この試験データに基づきSCCの評価・実機材料の寿命評価を行うことがある。そのため、実機により近い条件を模擬したSCC試験データに基づく評価精度の向上が望ましい。
_状態基準保全の充実においてSCCの発生・進展/抑制状況を直接または間接的にモニタリングする、または評価する手法の確立が望まれる。材料ならびに応力の要素は概ね製造・施工時に決まりやすい一方で、環境の効果は運転条件に応じて変化する要素であるから、腐食環境のモニタリング評価もこの点で状態基準保全の充実において重要な要素であると考えられる。
_現状の維持規格ベースの亀裂進展評価では過度に保守的な傾向があると考えられており、きめ細かなモニタリングあるいは評価手法に基づいた状態基準保全を導入することにより、保全周期の適正化が図ることができる。

(3)状態基準保全手法
プラント状態監視技術の適用により、プラントの安全・安定な運転が図られる。つまり、状態基準保全やオンラインメンテナンスの実現により、損傷リスクに応じた適切な保全方法の展開と合理的な点検が可能となり、また、適切な水質管理により燃料や構造材の劣化が抑制されることにより、より一層の安全性向上が図られる。

(C)産官学の役割分担の考え方
①産業界の役割

    • 実機腐食環境の詳細評価
    • モニタリング技術の高度化
    • 実機材劣化評価手法の開発と既存技術の高度化
    • 状態基準保全手法の開発

②国・官界の役割

    • 安全規制に必要な技術基盤の推進
    • 規制の高度化、合理化

③学術界の役割

    • 基礎データの蓄積、基盤技術の開発
    • 腐食環境シミュレーション技術の高度化
    • 実機材料劣化モデリング/シミュレーション
    • 人材育成

④学協会の役割

    • 規格基準・民間標準策定
    • 国内外への情報発信
    • 人的交流と育成

⑤産官学の連携

    • 状態基準保全技術開発の効率的推進
    • 保全プログラム高度化への反映
    • 産官学間の人材交流

(D)関連分野との連携
_SCCの抑制に関する課題のうち、「実機腐食環境評価及び環境緩和効果の実証」「実機腐食環境モニタリング技術及びSCCモニタリング/評価技術の開発」に関連する。また、水化学共通基盤のうち、「腐食環境評価技術」及び「腐食メカニズム」に係わる課題と関連する。これらとは、連携を図って研究を進める必要がある。
_人材RMについても、「状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化」及び「高経年化評価手法・対策技術の高度化」が謳われており、連携が必要である。

図6.1.4-1に導入シナリオ、表6.1.4-1に技術マップ、図6.1.4-2にロードマップを示す。

 

課題調査票

課題名 状態基準保全の支援

マイルストーン
及び
目指す姿との関連

短期 V.保全・運転の負荷軽減・品質向上
⇒保全・運転における負荷軽減により作業品質を向上させ、ヒューマンエラー防止等へ繋げる取組みの継続がなされる必要がある。中期 II.既設プラントの高稼働運転と長期安定運転の実現
⇒安定かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期間運転が必要となる。

長期 I. プラント全体のリスク極小化
⇒事故低減に係わる革新的技術がなされるために必要がある。

概要(内容)

(1) 環境モニタリング技術・水質管理システムの高度化
(1-1) 異常予兆に迅速に対応できる水質管理システム構築
プラントの水質状況を迅速且つ的確に把握することによりプラント設備の健全性を評価することを可能とする。多岐にわたるプラントの運転/水質情報を適切な処理や解析を行い、設備の異常兆候等を早期検知して予兆段階で速やかに修復するできる水質管理システムを構築することにより、材料損傷リスクを低減し、水質面からプラントの状態基準保全を支援する。海水リーク等圧力バウンダリーの損傷に伴う急激な水質異常にも対応できるシステムを検討する。
(1-2) オンラインモニタリングの高度化
_多岐にわたるプラントの運転/水質情報を適切な処理や解析を行い、設備の異常兆候等を早期検知して予兆段階で速やかに修復するできる水質管理システムを構築する。また、一次冷却水中の核分裂生成物濃度やオフガス系等の放射線線量率を監視することにより、燃料破損を早期に検出し、迅速かつ的確な対応が取れるモニタリング技術の高度化を図る。炉心損傷事故の発生時における格納容器雰囲気(放射線線量率、ガス濃度等)モニタや原子炉水位計等炉内状態把握のための計装機器の機能強化により、損傷状況を的確に把握できるモニタリング技術の高度化に化学の面から支援する。
(1-3) プラントの腐食環境モニタリングと材料損傷リスクの可視化
_プラント各部の腐食環境をモニタする方法、及びモニタした結果に基づいて材料損傷リスクを可視化し全体を鳥瞰できる手法を検討する。可視化は、実測値及びモデル解析結果とその評価結果も対象とする。
_二次系系統各部での鉄濃度、主に復水系での腐食電位やORP等の運転中連続モニタリングと配管等からの鉄溶出量との相関把握、及び水質変更時の影響を把握する。また、従来の還元性環境に対しヒドラジン無添加、或いは微量酸素注入による鉄低減効果の知見を充実させる。(2) 実機材劣化評価手法の開発
(2-1) 環境加速
_炉水環境が原子炉構成材料の腐食損傷に与える影響を実機に装着した構成材料を用いることで直接評価する方策を検討する。特に、強酸化環境による腐食加速と環境改善策を適用した場合の緩和効果を直接比較評価できる手法の構築を目指す。
(2-2) 材料劣化に及ぼす環境加速/緩和効果の実機構成材での評価方策(PWR/BWR共通)
実機環境に曝露された材料を直接活用して、材料劣化に及ぼす環境影響評価手法を開発する。運転中の実プラントの健全性モニタとしての適用を検討する。
(2-3) 材料劣化に及ぼす環境加速/緩和効果の実機構成材での評価方策(PWR)
_実機で長時間経過後に発生するSCCを短時間に実験室試験で再現できる加速試験方法を開発し、実験室試験を用いた精度良い実機SCC評価方法を確立する。

(3) 状態基準保全手法の開発 - ヘルスマネジメントのための状態監視技術の開発と適用 –
_プラント状態監視技術を開発・適用し、プラント状態基準保全技術に基づく経年劣化管理による損傷リスクに応じた適切な保全方法の構築を図る。

具体的な項目

(1) 環境モニタリング技術・水質管理システムの高度化
(2) 実機材劣化評価手法の開発
(3) 状態基準保全手法の開発

導入シナリオとの関連

水化学によるプラント状態基準保全の支援

課題とする根拠
(問題点の所在)

_水化学による状態基準保全の支援技術の適用により、運転トラブルの防止、経年劣化対策の確かな実施及び作業環境の改善を通じて、事故発生リスクが低減する。一次冷却材の水質異常兆候を早期に検出し、プラントの運転管理への適切な判断材料が提供される。また、格納容器内雰囲気や炉水状況のモニタリング技術高度化を化学の観点から支援することにより、事故発生防止及び拡大防止に貢献できる。

現状分析

(1)    環境モニタリング技術・水質管理システムの高度化
_炉水水質のモニタリングや水質診断技術に関してはこれまでに多くの研究開発が行われ、プラントの水質維持に貢献してきた。一方で、原子炉構成材料の経年劣化に関する状態基準保全技術の開発・適用方策進んでおらず、炉内各部の腐食環境をモニタし、あるいは、異常予兆を早期に察知し対処する水質管理を確立するには、更なる研究開発が必要である。
_2011年に、BWRプラント復水器から炉内に大量の海水が流入するトラブルが発生した。水質管理システム高度化に当たっては、急激な水質変化にも対応できるようにすることが必要である。
_これまで、炉内環境のモニタは限られた部位でのみ実施されており、炉内全体については行われていない。炉内各部位の評価は主としてモデル解析を通じ評価している。腐食環境の可視化はこれまで実施されていない。
_1F事故においては、原子炉水位計や格納容器雰囲気モニタが十分機能せず、事故の対応に影響を与えた。過酷事故時の原子炉や格納容器内の状況を把握できるモニタリング技術の高度化が求められており、化学の立場からの支援を考える必要がある。(2)    実機材劣化評価手法の開発
_プラント構成材の状態基準保全技術の開発にあたっては、実機水質モニタリング/評価技術を高度化するとともに、SCCやFACによる材料の劣化・損傷に及ぼす水質影響を含めた精度の高い経年劣化評価技術の開発が不可欠である。実機腐食環境の詳細評価に繋がる研究として、腐食環境評価法の高度化に係わる研究が国の高経年化対策事業として実施されたが、継続されていない状況であり、再構築が必要である。

(3)    状態基準保全手法の開発
_状態基準保全に繋がる研究開発の実施例は少ないが、水素注入等のSCC環境緩和技術を適用した効果を反映した保全を行うことを目指して、近年、プラント運転中の炉内ヘルスモニタリングの一つとして炉内腐食電位測定が計画されたが、震災の影響で中止になっている。今後、研究開発の再構築が必要である。保全支援のための技術開発を推進していくには、水化学技術単独では難しく、高経年化対応等の関連研究等と連携していく必要がある。

期待される効果
(成果の反映先)

    • 状態基準保全の実現により、損傷リスクに対する適切な保全方法の展開により合理的な点検が実現
    • 水質等の異常予兆を早期に察知することにより、プラントの安定・安全な運転に寄与
    • 適切な情報発信の組み合わせによって見える化に資することができ、安心・安全意識が醸成

実施にあたっての課題

    • 実機炉内データの取得が成否の鍵となるが、多額の研究開発費が必要
    • 総合的技術であるため、多くの関係者の連携・協働が必要

必要な人材基盤

(1)    人材育成が求められる分野
_状態基準保全の支援技術の研究開発を推進していくためには、以下の分野に精通した人材が求められる。
水質管理・診断、材料劣化評価、設備・機器の状態監視、オンラインメンテナンス、可視化(2)    人材基盤に関する現状分析
_これらの分野に関する研究開発は、従来、水質管理や保全に係わる研究開発はメーカと電力会社をはじめ、研究機関、大学で行われてきた。

(3)    課題
_長い経験が必要な分野であり、熟練には時間がかかる。また、今後人材の不足が予想されることから、長期的視野に立った育成計画が必要である。非原子力の分野との連携・協働も有効と考えられる。

他課題との相関

人材RM
【S111_d32】状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
【S111M107_d36】高経年化評価手法・対策技術の高度化

実施時期・期間

短~長期

実施機関/資金担当
<考え方>

産業界、学術界/産業界

    • 異常予兆に迅速に対応できる水質管理システム構築による状態基準保全の支援
    • オンラインモニタの高度化による状態基準保全支援
    • 材料劣化に及ぼす環境加速/緩和効果の実機構成材での評価方策

<考え方>

    • 産業界(電気事業者、メーカ)は、実施主体として、安全性・信頼性・経済性の確保向上を目的とした開発研究及び基盤整備を行う。
    • 安全基盤研究の推進・検証を行う。
    • 実施主体が資金担当となることが適当と考える。

産業界/産業界

    • プラントの腐食環境モニタリングと材料損傷リスクの可視化

<考え方>

    • 産業界(電気事業者、メーカ)は、実施主体として、安全性・信頼性・経済性の確保向上を目的とした開発研究及び基盤整備を行う。
    • 実施主体が資金担当となることが適当と考える。

産業界、官界、学術界/産業界、官界

    • ヘルスマネジメントのための状態監視技術の開発と適用

<考え方>

    • 産業界(電気事業者、メーカ)は、実施主体として、安全性・信頼性・経済性の確保向上を目的とした開発研究及び基盤整備を行う。
    • 学術界は、安全基盤研究の推進・検証を行う。
    • 官界は、安全規制につながる安全研究と安全基盤研究の推進を行う。
    • 実施主体が資金担当となることが適当と考える。
その他

 

6.1.3 PWR 蒸気発生器長期信頼性確保

_蒸気発生器(以下SG)長期健全性確保のための水質管理は、SG伝熱管腐食損傷の発生による一次系冷却材の二次系統、環境への放射能放出を防止することを目的としており、プラント安全性維持に必要な深層防護レベル1「異常・故障の発生防止」に該当する。
_また、一次系冷却材の漏洩による放射能の環境放出拡大防止対策は、一、二次系の水質管理技術の範囲外となり、SG伝熱管健全性確保に対する影響が大きい、復水器冷却水漏えい等の水質劣化に対しては、水質監視設備、水質浄化系設備の増強等、設備側の保全対策が確立されているため、レベル2「異常・故障の拡大防止」、レベル3「事故の影響緩和」、レベル4「設計基準を超す事故への施設内対策」に該当しない。
_なお、スケール付着影響緩和技術の開発、実機適用に際しては、SG伝熱性能の維持、回復についても考慮する。

6.1.3.1 蒸気発生器伝熱管の健全性確保
_国内PWRでは、1990年代後半から2000年代初頭にかけて、MA600合金製伝熱管を採用した旧型のSG伝熱管の腐食損傷が顕在化し、種々の水質改善対策が適用されるとともに、より耐食性の高いTT600合金、さらにはTT690合金製伝熱管を採用した新型SGに取替えられた結果、現状、SG二次側でSGの信頼性にかかわる腐食損傷は顕在化していない。
_SG伝熱管の二次側腐食損傷として主に経験されてきたIGA(Inter Granular Attack 粒界割れ)に対し、TT690合金は従来の600合金から材料耐性の向上が図られているが、不純物の介在によりクレビス環境が大きく酸、あるいはアルカリ側に偏った環境下で、酸化銅等の酸化剤の共存により腐食電位が上昇した場合は、600合金と同様にIGA発生感受性を有しており、クレビス環境の確認、環境緩和対策の開発を継続していくことは重要である。
_SG伝熱管の健全性を確保していくためには、設計・建設段階における材料・形状等の選択、製作・施工方法の管理、運転開始後における適切な検査・補修を行うことはもちろんのこと、SGに持ち込まれる不純物管理を適切に行うとともに、クレビス環境が良好に維持されていることを確認し、クレビス環境変動時には、効果的なクレビス環境緩和対策を施すことにより、SG伝熱管損傷の発生、進展を防止することが重要である。
_これらSG伝熱管の健全性確保に関する、現状、研究方針と課題、及び、産官学の役割分担について以下に述べる。

(A) 現状分析

(1) SG伝熱管腐食メカニズムの解明
_SGは管外蒸発型の熱交換器であり、SG伝熱管と管支持板間に物理的に形成されるクレビス、あるいは給水から持ち込まれた鉄が管板上に堆積、固着した下部に形成されるクレビスにおいて乾湿交番(Dry & Wet)環境が生じ、SG器内水に含まれる微量の不純物が高濃度に濃縮する。不純物バランスの偏りにより、クレビス内環境が強アルカリ性、あるいは強酸性となり、かつ酸化剤の共存による腐食電位の上昇がIGAの発生原因となることを確認し、SGへの不純物持込み防止、系統内の還元性環境強化等水質改善対策を適用してきた [6.1.3.1][6.1.3.2] [6.1.3.4] [6.1.3.6] [6.1.3.7]
_最近のPWR二次系水質管理実績によると、SG伝熱管の損傷を経験した時期に比べて不純物濃度は大幅に低減され、さらに、改良伝熱管であるTT690合金の適用による材料耐性の向上により、SG伝熱管損傷の発生リスクは大きく低減しているものと判断している。
_一方、海外では鉛等の微量金属が関与すると想定されるSG伝熱管損傷が600合金で認められており[6.1.3.5]、国内プラント水質実績から、鉛等微量金属成分が確認されている。しかしながら、これら微量金属のクレビスへの濃縮挙動、SG伝熱管腐食への影響、供給系統の特定ができておらず、管理手法、方針の設定ができていない。

(2) SGクレビス環境評価手法の開発・高度化
_SG二次側クレビス環境の評価に対し、高温電極、模擬濃縮部等を用いたモデルボイラー試験による適用性検討が行われてきた[6.1.3.8]が、これら直接監視評価技術は、設備が大がかりとなる、連続計測が困難である等の課題があり、実用化に至っていない。
_このため、現状はプラント運転中のクレビス環境評価として、SGバルク水質からの計算による評価を適用している[6.1.3.9]

(3) SG二次側クレビス酸性環境緩和技術の開発
_SG伝熱管損傷防止を目的として取り組んできた清浄度管理(使用副資材管理、機器洗浄等)の徹底により、プラント起動時、定常運転時の不純物のうち、ナトリウム、塩化物イオンの濃度は大幅に低減された。
_一方で、復水脱塩設備カチオン交換樹脂の劣化生成物であるPSS(ポリスチレンスルホン酸)に起因すると想定される硫酸イオンの影響が相対的に大きくなり、夏期の復水温度上昇時等にSGクレビス環境が酸性側に偏るケースが増え、酸性側環境での伝熱管損傷緩和対策の必要性が高まっている[6.1.3.1][6.1.3.6]
_硫酸イオン持込抑制対策として、復水脱塩設備カチオン樹脂劣化防止、溶出低減対策技術の導入が進められており、一定の導入効果が得られている。しかしながら、一部プラントで運転中に硫酸イオンのスパイク的な増加が認められる例があり、一方では、高pH処理の適用に伴う復水脱塩設備の部分通水、バイパス運用等浄化効率が低下するケースもある。また、酸性クレビス環境緩和対策として、緩衝剤の基礎検討を開始しているが、化学物性に基づく机上検討の段階である。

(4) SGクレビス濃縮環境緩和技術の開発
_海外では、管板上のハードスラッジ堆積部においてデンティグや孔食、SCCが顕在化している。化学洗浄も適用されているが、クレビス固着スケールの除去効果は十分ではなく、廃液処理にかかる費用及び労力も大きい。国内ではスラッジランシングによる管板上固着スケールの除去を行うとともに、給水鉄濃度の低減による管板上スラッジ堆積抑制に取り組んでおり、比較的良好なSG環境が達成されている。また、一部プラントではASCA(Advanced Scale Conditioning Agent)洗浄による固着スケール脆弱化に対する試行が行われている[6.1.3.10]が、その効果は今後確認の必要があり、長期健全性維持の観点からは更なる技術革新が必要と考えられる。

(5) スケール付着抑制技術の適用影響評価
_スケール付着抑制技術として、海外でスケール分散剤[6.1.3.1]、フィルムフォーミング・アミン(FFA)等の試験運用が開始されつつある[6.1.3.11]が、これら技術の国内プラント適用の必要性、適合性に関する見極めを早期に行うことが重要である。なお、FFAについては、フィルムフォーミング・プロダクト(FFP)と表現することがあるが、ここではFFAと称する。

(6) 水質管理技術の適合性検証
_SGクレビス環境は試験による再現が困難であり、長期健全性への水化学の影響を把握することは容易ではない。また、耐SCC改良材であるTT690合金に対しても、SCC進展の感受性があることが報告されている。これらの状況から、長期の水化学管理技術適用の妥当性を確認するために、廃炉活用研究として実機材の抜管調査等による適合性検証が重要と考えられる。

(7) 代替ヒドラジン技術の導入
_主にPWRプラントの二次系水処理に使用している脱酸素剤としてのヒドラジンは、取扱い上の危険性が指摘されており、1997年に制定されたPRTR法(※1)により管理対象物質として使用状況の公開が義務付けられているほか、SAICM(※2)により将来的に、ヒドラジンを使用できなくなる可能性が高く、ヒドラジンを使用しない水処理の開発を行っていく必要がある。

※1:PRTR:環境汚染物質排出移動登録の略で、有害物質移動量の届出制度
※2:SAICM:国際的な化学物質管理のための戦略的アプローチ

(B) 研究方針と実施にあたっての問題点
_SGの長期信頼性を確保し、プラントの公益性を高めるためには、上述した現状課題に対し、以下に示すような水化学技術の高度化、新技術の開発に継続的に取り組んでいくことが重要である。

(1) SG伝熱管腐食メカニズムの解明
_SG伝熱管材料の腐食メカニズムについては、酸性、アルカリ性環境下で酸化剤の共存により発生することが確認され、SGへの不純物、酸化剤持込み防止による管理手法を確立、提案、実機適用することにより、SG二次側伝熱管損傷は大幅に低減した。
_しかしながら、鉛等一部の微量金属成分が関与する腐食メカニズム、クレビスへの濃縮挙動、及び持ち込み源、形態は明確になっておらず、これらを明確化することにより、SGクレビス環境緩和のための管理指針を確立するとともに、プラント設計、建設、補修、点検で鉛を含む材料、資材を使用制限するための方策を検討する。

(2) SGクレビス環境評価手法の開発・高度化
_現状SGのクレビス環境評価は、SG器内水不純物濃度から濃縮部の環境を推定するクレビス濃縮評価コードを構築し、本計算コードを介して評価を行っている。
_一方、クレビス環境を直接、逐次監視する技術の開発は、クレビスへの不純物の濃縮、腐食メカニズムの解明、並びに環境緩和技術の開発においても重要であり、この観点からin-situ分析技術等最新の分析評価技術の開発による検証に最重要課題として取り組んでいく。

(3) SG二次側クレビス酸性環境緩和技術の開発
_クレビス酸性化環境緩和を目的とし、硫酸イオン発生源の一因と想定しているPSSの持ち込み低減のため、復水脱塩設備カチオン樹脂への耐酸化劣化樹脂の適用、復水脱塩設備通水率の低減等の対策が進められているが、依然としてクレビス環境が酸性化する傾向は認められている。
_SGの硫酸イオン低減のためには、復水脱塩設備カチオン樹脂の更なる劣化防止、溶出抑制等新たな技術の開発に加えて、復水脱塩設備の運用方法(コンデミ部分通水、バイパス、SGブローダウン選択浄化等)を含む二次系浄化システム全体の最適化検討を行う。
_また、酸性クレビス環境に対して有効な中和効果を有する緩衝剤として、Ca、Mg等アルカリ土類金属添加が検討されたが、これら化学成分の塩類は当該環境での溶解度が小さく、クレビスに析出・付着してクレビス容積を減少させ、濃縮倍率を増加させる懸念がある。このため、クレビスに析出・付着してクレビス容積を減少させない、非析出型の緩衝剤を開発し、中和効果の確認、二次系系統構成材料への影響確認を行い、実機適用を推進する。

(4) SGクレビス濃縮環境緩和技術の開発
_SG器内クレビスの濃縮低減による腐食環境緩和を目的とし、SG二次側構成材料健全性確保、廃液環境負荷低減を考慮し、スケール除去効果の高い洗浄技術の開発を行う。

(5) スケール付着抑制技術の適用影響評価
_スケール付着抑制技術として、スケール分散剤、FFAの国内プラントへの適用を検討する場合には、適用検討に先立って、使用する薬剤の二次系系統構成材料、復水脱塩設備樹脂への影響評価、パッキン、ガスケット等有機系材料への適合性評価を実施しておくことが重要である。

(6) 水質管理技術の適合性検証
_実機で長期間運転に供された廃炉材を用い、SG健全性への水化学管理技術の改善効果、影響について把握・検証を行う。これにより、水化学管理技術の妥当性を確認するとともに、更なる高度化の方向性に対する指標を得る。

(7) 代替ヒドラジン技術の導入
_ヒドラジン代替剤、ヒドラジン量低減策の実機適用に際し、従来のヒドラジンが担う、脱酸素性、SGでの酸化物(酸化剤)還元効果、系統のpH維持の確認を行った上で実機試験を行い、実機での成立性を実証していくことになるが、それに合わせ、対象薬剤の安定性、並びに分解生成物の種類と、構成材料に及ぼす影響(例えばpH低下)についても検証を行う必要がある。

(C) 産官学の役割分担の考え方

(1) 産業界の役割
_① SG伝熱管腐食メカニズムの解明
_② SGクレビス環境評価手法の開発
_③ SGクレビス酸性環境緩衝技術の開発
_④ SGクレビス濃縮環境緩和技術の開発
_⑤ スケール付着抑制技術の適用影響評価
_⑥ 水質管理技術の適合性実力検証
_⑦ 代替ヒドラジンの導入
_⑧ プラント実態を把握するための実機運転データ、水質データの蓄積

(2) 国・官界の役割
_① データや評価技術の検証
_② 国内外状況を確認した上、現実的な対応方針の策定

(3) 学術界
_① 基礎データ、新知見の蓄積と新知見レビュー
_② 新実験技術、新計測技術開発のための基盤研究
_③ 基盤研究に係わる人材育成
_④ 人材の供給

(4) 学協会の役割
_① 民間標準類策定
_② 人的交流と育成

(5) 産官学の連携
_① SG伝熱管健全性確保に対応できる人材の育成

6.1.3.2 スケール付着影響緩和技術の開発
_プラント長期信頼性確保のためには、構成材の健全性を維持するとともに、SGをはじめとする機器内表面へのスケール付着、蓄積に基づく性能劣化現象を極力小さくしていくことが必要である。
_二次系系統で材料のFAC(Flow Assisted / Accelerated Corrosion)によって発生した鉄がSGへ持ち込まれ、SG器内構造物に付着し、伝熱抵抗、流動抵抗となりプラント性能、運用に影響を及ぼす機器の性能劣化現象が顕在化している。
_また、クレビス部にスケールが蓄積することにより、当該部の濃縮倍率が増加し、当該部での損傷発生リスクが増大する。
_これら機器性能劣化を防止し、プラント安定運転を確保していくためには、スケール付着、蓄積を抑制することが重要であり、対応策として系統からの腐食生成物の発生を抑制する技術、機器表面に付着させない技術、機器表面に付着したスケールを除去し機器性能を回復させる技術がある。
_これら技術の適用に対し、水化学改善あるいは化学的技術を基にした新水処理薬剤の適用等による効果的、効率的な対応が必要であり、現状技術の高度化、新技術の開発を推進していくことが重要である。
_SGスケール付着影響緩和技術に関する、現状、研究方針と課題、及び産官学の役割分担について以下に述べる。

(A) 現状分析

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_スケール付着による機器の性能低下抑制対策として、スケール付着に伴う機器性能に対する鉄濃度の関係を整理し、水質改善等による鉄低減対策が適用されつつある[6.1.3.1][6.1.3.6]。しかしながら、スケール付着メカニズム、及び機器の性能低下抑制対策による機器毎の性能変化の精度高い予測は出来ておらず、PWR二次系機器全体のスラッジマネジメントを効率的に進める上での課題となっている。

(2) SGへの鉄持込抑制技術の開発
_SGへの鉄の持ち込み抑制、二次系系統材料のFAC抑制対策として、気液二相流域のpH上昇を目的として、高pH処理、代替アミン処理の適用等給水処理条件の改善に取り組んでいる[6.1.3.12]
_二次系系統の銅系材料を排除し、高pH処理(給水pH9.8~10)を適用したプラントでは、十分な鉄低減効果が得られ、スケール付着抑制傾向が認められつつある。
_一方、銅系材料が残留しているプラントでは、プラント毎に系統構成、材料に配慮し、適切な処理を適用していくことが必要であるが、従来AVTpH9.2~9.8の中間pHではスケール付着試験データ、実機実績が乏しく、スケール付着抑制効果が得られるpHの見極めはできていない。
_また、主に火力プラントで試運用が進められている、低温系統の機器、配管内表面に有機性の皮膜を形成し、当該部からの鉄の溶出を抑制するFFAについては、二次系系統構成材料、復水脱塩設備樹脂への影響評価、パッキン、ガスケット等有機系材料への適合性評価を実施するとともに、高pH処理との併用の必要性について検討を行ったうえで国内プラントへの適用を判断していくことが重要である。

(3) スケール除去・改質技術の開発
_付着スケールを積極的に全量除去することを目的とした手法として、海外で適用されている化学洗浄があげられるが、化学洗浄は高温でかつ比較的高濃度の洗浄液を用いることから、SGの系統構成材に及ぼす影響を確認しておくことが重要であり、また、化学洗浄の実施により多量の高濃度洗浄液を含んだ廃液が発生する。
_一方、付着したスケールの一部を除去、改質する技術として、従来の化学洗浄よりも希薄洗浄液条件かつ低温条件で実施するASCAの国内プラントへの適用が開始されている。本手法はSG器内スケール全量ではなく一部を溶解し、スケール空隙率、脆弱性を増加させることによって伝熱性能の回復、BEC管支持板付着スケールの除去を主目的としたものであり、実機適用実績から期待された効果が得られつつある。しかしながら、SG器内のスケールの一部を洗浄対象としているため、洗浄1回あたりの除去量は少なく、AVT条件下での洗浄頻度は高くなる。

(4) スケール付着抑制技術の開発
_SGにスケールを付着しにくくする技術として、米国において、ポリアクリル酸を用いたスケール分散剤の適用がEPRI主導のもとで検討、実機試運用が開始され、一部スケール付着抑制に対する良好なデータが得られつつある。
_国内プラントへの適用にあたっては、スケール性状、プラント構成、運用の違いによる適用効果の違い、プラント構成材への影響を把握し、適用性を早期に判断する必要がある。

(5) 代替ヒドラジン技術適用への対応
_代替ヒドラジンの実機適用に当たり、使用薬剤の気液分配に基づく気液2相流系統中ミストのpH低下、有機系薬剤の場合はSG器内等高温系統で分解、生成する有機酸による主に蒸気中ミストのpH低下挙動と、pH低下がFAC速度に及ぼす影響を確認しておくことが重要である。
_また、使用する薬剤、並びに分解生成物がスケールの稠密化に及ぼす影響の有無を把握しておくことが必要である。

(B) 研究方針と実施にあたっての問題点

_SGの長期信頼性を確保し、プラントの公益性を高めるためには、上述した現状課題に対し、以下に示すような水化学技術の高度化、新技術の開発に継続的に取り組んでいくことが重要である。

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_高温水中機器(熱交換器、給水ポンプ、制御弁、流量計等)へのスケール付着抑制対策を検討するため、各機器環境条件下でのスケール付着メカニズムを解明する。また、スケール付着抑制対策を検討するための付着現象再現試験及び機器性能変化予測方法の構築を行う。

(2) SGへの鉄持ち込み抑制技術の開発
_プラント毎に系統構成、材料を考慮したスケール付着抑制効果を得るための給水pH条件、並びにpH上昇手法(代替アミン等)を検討し、実機適用に際しては、系統構成材料への影響、プラント運用について検討を行う。
_また、高pH処理、代替アミン処理等SGへの鉄持ち込み技術を適用したプラントの、鉄低減実績、スケール付着抑制効果を評価し、新たな代替アミンの適用等更なる対応策の必要性、手法について検討を行う。
_一方、FFAの国内プラントへの適用に関しては、高pH処理、代替アミン処理との併用の必要性を見極めるとともに、二次系系統使用材料との適合性評価を行っていく。

(3) スケール除去・改質技術の開発
_ASCA洗浄は、AVT条件下でBEC閉塞、伝熱性能低下効果を維持するためには1~2回定検毎の高頻度適用が必要であり、廃液タンク設置に大きなスペースを必要とし、廃液処理に長期間を要している。このため、廃液処理の合理化(廃液の排出時その場処理、廃液処理手法の改善等)技術の開発、適用を行う。
_また、ASCA洗浄はSGクレビス部等の強固なスケールを除去できる洗浄手法ではないことから、SG二次側構成材料の健全性を確保しつつ、スケール除去、改質効果が高く、強固なスケールも洗浄可能な除去技術の開発を行う。

(4) スケール付着抑制技術の開発
_EPRI主導のもと検討されているスケール分散剤の国内プラントへの適用性評価を行う。
_国内プラントへの適用性判断にあたり、スケール性状、プラント構成の違いによる適用効果、プラント構成材への影響、プラント運用への影響を見極め、適用効果が限定される、あるいは構成材料に影響がある場合、新分散剤の開発、実機適用性検討を行う。

(5) 代替ヒドラジン技術適用への対応
_代替ヒドラジンの国内プラントへの適用にあたり、使用する薬剤のプラント運転中の還元効果、プラント停止中の保管時腐食抑制効果、並びに環境負荷への影響を確実に把握するとともに、使用する薬剤、並びに分解生成物のプラント構成材への影響、プラント運用への影響、スケール稠密化に対する影響について十分なプラント適用性検討を行う。

(C) 産官学の役割分担の考え方

(1) 産業界の役割
_① スケール付着メカニズムの解明と付着抑制技術の開発
_② SGへの鉄持ち込み抑制技術の開発
_③ スケール除去・改質技術の開発
_④ スケール付着抑制技術の開発
_⑤ 代替ヒドラジン適用への対応
_⑥ プラント実態を把握するための実機運転データ、水質データの蓄積

(2) 国・官界の役割
_① データや評価技術の検証
_② 国内外状況を確認した上、現実的な対応方針の策定

(3) 学術界
_① 基礎データ、新知見の蓄積と新知見レビュー
_② 新実験技術、新計測技術開発のための基盤研究
_③ 基盤研究に係わる人材育成
_④ 人材の供給

(4) 学協会の役割
_① 民間標準類策定
_② 人的交流と育成

(5) 産官学の連携
_① スケール付着影響緩和技術の開発に対応できる人材の育成

図6.1.3-1に導入シナリオ、表6.1.3-1に技術マップ、図6.1.3-2図6.1.3-3にロードマップを示す。

参考文献

[6.1.3.1] 日本原子力学会編, “原子炉水化学ハンドブック”, コロナ社 (2000).
[6.1.3.2] I. Ohsaki et.al, Proc. of Internal SG & Heat Exchanger Conf., Tront, Canada, 2, p.893 (1994).
[6.1.3.3] PWR Secondary Water Chemistry Guide Lines Revision 6, EPRI 108224 (2004).
[6.1.3.4] A. Kishida, H. Takamatsu, H. Kitamura et al., “The Causes and Remedial Measures of Steam Generator Tube Intergranular Attack in Japanese PWR”, Proc. 3rd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, p.465 (1987).
[6.1.3.5] K. Fruzzetti, “Pressurized Water Reactor Lead Sourcebook”, EPRI 1013385 (2006).
[6.1.3.6] A. Maeda et al., Proc. of International Conference on Water Chemistry of Nuclear Systems, NPC2012, Paris, France (2012).
[6.1.3.7] 八島清爾, 原子力工業, 41[4], 62-69 (1995).
[6.1.3.8] T. Tsuruta, S. Okamoto, E. Kadokami, and H. Takamatsu, “IGA/SCC Crack Propagation Rate Measurement on Alloy 600 SG Tubing Using a Side Stream Model Boiler”, The 3rd JSME/ASME Joint International Conference on Nuclear Engineering, Kyoto, Japan, p.291 (1995).
[6.1.3.9] Y. Shoda, E. Kadokami, and T. Hattori, “Examination of New Bulk Water Molar Ratio Index for Crevice Environment Estimation”, Proc. of International Conference on Water Chemistry of Nuclear Systems 7, Bournemouth, UK, p.608 (1996).
[6.1.3.10] M. Little, R. Varrin, A. Pellman, and M. Kreider, “Advanced Scale Conditioning Agent (ASCA) Applications: 2012 Experience Update”, Proc. of International Conference on Water Chemistry of Nuclear Systems, NPC2012, Paris, France, Paper No.O60-140 (2012).
[6.1.3.11] U. Ramminger, S. Hoffmann-Wankerl, and J. Fandrich, “The application of film-foming amines in secondary side chemistry treatment of NPPs”, Proc. of International Conference on Water Chemistry of Nuclear Systems, NPC2012, Paris, France, 26.Sep. (2012).
[6.1.3.12] O. Jonas, “Control Erosion/Corrosion of Steels in Wet Steam”, Power, p102 (1985).

 

課題調査票

課題名

SG伝熱管の健全性確保

マイルストーン
及び
目指す姿との関連

短Ⅴ.保全・運転負荷軽減・品質向上
⇒効果的・継続的な自主的安全性向上のため、保全・運転管理の確立、高度化を図る必要がある。中Ⅱ.既設プラントの高稼働運転と長期安定運転の実現
⇒電力安定供給、かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期間運転が必要となる。

概要(内容)

(1) SG伝熱管腐食メカニズムの解明
_SG伝熱管材料の腐食メカニズムについては、酸性、アルカリ性環境下で酸化剤の共存により発生することが確認され、SGへの不純物、酸化剤持込み防止による管理手法を確立、提案、実機適用することにより、SG二次側伝熱管損傷は大幅に低減した。しかしながら、鉛等一部の微量金属成分が関与する腐食メカニズム、クレビスへの濃縮挙動は明確になっておらず、これらを明確化することにより、管理要否、手法を検討する。(2) SGクレビス環境評価手法の開発・高度化
_SGクレビス環境が伝熱管の腐食環境にないことをモデルボイラー試験、計算評価の構築により、間接的に環境評価を行っているが、より直接的な監視を行う上でのin-situe監視技術等の開発・検証を行う。

(3) SG二次側クレビス酸性環境緩和技術の開発
_最近の実機二次系水質実績において、SGクレビス環境の酸性化傾向が認められ、当該環境を中和でき、クレビスに析出・付着してクレビス容積を減少させない、揮発性等の中和剤の開発、効果確認、実機適用を行う。

(4) SGクレビス濃縮環境緩和技術の開発
_プラントの運転長期化に伴いSGへ持ち込まれた鉄がSG二次側クレビス等へ付着し濃縮環境を増加させる。SG二次側に付着した固着スケールを構成材料の健全性を確保した上で除去できる技術を検討する。

(5) スケール付着抑制技術の適用影響評価
_スケール付着抑制技術として、スケール分散剤、フィルムフォーミング・アミン(FFA)等の国内プラント適用の必要性、適合性に関する見極めを早期に行う。

(6) 水質管理技術の適合性検証
_長期の水化学管理技術適用の妥当性を確認するために、廃炉活用研究として実機材の抜管調査等による実力適合性検証手法の検討、確立を行う。

(7) 代替ヒドラジン技術の導入
_SG伝熱管健全性確保のため、系統内還元性維持のため使用されているヒドラジンは、将来的に、有害物質として使用が制限される可能性が大きく、ヒドラジンを使用しない水処理の検討を行う。

導入シナリオとの関連

_水化学によるSG伝熱管腐食メカニズムの明確化と、環境評価技術高度化、環境緩和技術の開発・実機適用によるSG伝熱管長期健全性の向上

課題とする根拠
(問題点の所在)

(1) SG伝熱管腐食メカニズムの解明
_海外で鉛等微量金属が関与すると想定されるSG伝熱管損傷が認められている。国内プラント水質実績から、鉛等微量金属成分が確認されているが、これら微量金属のクレビスへの濃縮挙動、SG伝熱管腐食への影響、供給系統の特定ができておらず、管理手法の設定ができていない。(2) SGクレビス環境評価手法の開発・高度化
_SGクレビス環境評価コードは、計算を介した環境評価であり、一方、模擬濃縮部を設けたモデルボイラー、高温電極による直接監視評価技術は、設備が大がかりとなり、連続計測が困難である等課題があり、実用化に至っていない。

(3) SG二次側クレビス酸性環境緩和技術の開発
_クレビス環境酸性化の要因の一つにコンデミ樹脂の劣化生成物であるPSS(ポリスチレンスルホン酸)の持込があげられ、酸性環境中和手法の一つとして、Ca、Mg等アルカリ土類金属添加が検討されたが、これら化学成分の塩類は当該環境での溶解度が小さく、クレビスに析出・付着してクレビス容積を減少させ、濃縮倍率を増加させる懸念がある。

(4) SGクレビス濃縮環境緩和技術の開発
_SG器内クレビスの濃縮低減による腐食環境緩和のためには、SG二次側構成材料健全性確保、廃液環境負荷低減を考慮した、スケール除去効果の高い技術の開発が必要である。

(5) スケール付着抑制技術の適用影響評価
_スケール分散剤、FFAの国内プラントへの適用を検討する場合には、適用検討に先立って、使用する薬剤の二次系系統構成材料への適合性評価、復水脱塩設備樹脂への影響評価を実施しておくことが重要である。

(6) 水質管理技術の適合性検証
_実機で長期間運転に供された廃炉材を用い、SG健全性への水化学管理技術の改善効果、影響について把握・検証を行い、水化学管理技術の妥当性確認、更なる高度化の方向性に対する指標を得る。

(7) 代替ヒドラジンの導入
_ヒドラジン代替剤、ヒドラジン量低減策の実機適用に当たり、脱酸素性、SGでの酸化物(酸化剤)還元効果、系統のpH維持の確認を行うとともに、対象薬剤の安定性、分解生成性生物の種類と、構成材料に及ぼす影響(例えばpH低下)について検証を行う必要がある。

現状分析

(1) SG伝熱管腐食メカニズムの解明
_鉛等微量金属のSG器内での濃縮挙動、腐食寄与が不明であり、SG伝熱管腐食に及ぼす影響が明確化できておらず、管理方針が決定できていない。(2) SGクレビス環境評価手法の開発・高度化
_プラント運転中のクレビス環境が適切に管理できているか直接的に監視できる技術の実機適用には至っていない。本技術開発により、腐食メカニズム解明、環境緩和技術の開発に対し、検証ツールとなることが期待できる。

(3) SG二次側クレビス酸性環境緩和技術の開発
_硫酸イオン持込抑制対策として、更なる復水脱塩設備カチオン樹脂劣化防止、溶出低減対策技術の導入が進められている。一方、酸性クレビス環境中和対策として、非析出型中和剤の基礎検討を開始しているが、化学物性に基づく机上検討の段階である。

(4) SGクレビス濃縮環境緩和技術の開発
_海外適用実績のある化学洗浄は、クレビス固着スケールの除去効果が十分ではなく、廃液処理負荷が非常に大きい。一方、国内実績のある希釈化学薬品を用いるASCAは、固着スケールの除去には適していない。

(5) スケール付着抑制技術の適用影響評価
_SGへの鉄持ち込み抑制技術の適用効果に基づき、スケール分散剤、フィルムフォーミング・アミン(FFA)適用の必要性の見極め、適用に際しては適合性の見極めを行うことが必要である。

(6) 水質管理技術の適合性実力検証
_長期の水化学管理技術適用の妥当性を確認するための、廃炉活用研究による実力適合性検証手法を確立する必要がある。

(7) 代替ヒドラジン技術の導入
_系統内還元性維持のため、各種代替ヒドラジン剤の適用性検討が行われてきたが、現状適合剤の選定に至っていない。

期待される効果
(成果の反映先)

・SG伝熱管健全性向上によるプラント信頼性向上

・スケール除去方法の適正化による環境負荷軽減

実施にあたっての問題点

課題全体の共通問題として下記がある。

    • 課題の緊急性(当面SG伝熱管健全性は良好)
    • 課題の原子力安全との相関性の明確化(SG伝熱管の長期健全性確保)
    • 研究開発費の確保(SA対策、再稼動対応ではないため費用の早期確保が難しい可能性あり)

必要な人材基盤

(1) 人材育成が求められる分野

    • 水化学、状態監視技術
    • 化学物性評価技術
    • 腐食環境評価技術
    • 高温、高圧条件下実験技術

(2) 人材基盤に関する現状分析

    • 電力事業者は、プラント運転を通じ評価データの蓄積、検討課題の抽出、確認を実施してきた。
    • プラントメーカは、国プロ、電共研、委託研究で研究開発を実施し、必要な人材の育成を行ってきた。
    • 大学等では、共同研究、インターシップ等により、技術交流、人材育成を行ってきた。
    • 水化学技術は大学での専門コース、講座等が無いため、(1)項の各技術分野に対しOJTを通じて人材育成してきた。
    • 海外の新技術導入について、積極的な情報の入手を行うことを念頭においた人材育成が必要である。

(3) 課題

    • 1F事故後のプラント長期停止により、電力事業者、プラントメーカとも実務経験を積む場が減少している。
    • 原子力プラント水化学関連改善技術については、SA対策、プラント再稼動に係わる項目ではないため、開発研究の実施が先送りとなり、OJTを通じた人材育成が行えていない。
    • 上記に伴い、若手技術者の原子力離れを招き、ベテラン技術者からの技術伝承が円滑に行えない状況になりつつある。

他課題との相関

    • S111_d32:状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
    • S111_d39:検査・補修技術の高度化
    • S111M107_d36:高経年化評価手法・対策技術の高度化
    • M106_c01:計測技術・解析技術の高度化

実施時期・期間

中期(2030年)

実施機関/資金担当
<考え方>

産業界・学術界/産業界
_SG伝熱管腐食メカニズムの解明、SGクレビス環境評価技術の開発・高度化、クレビス環境、濃縮緩和対策に関する技術開発を実施
<考え方>

    • 電力事業者はプラント実態を確認し、研究開発課題の選定、実機適用、実機適用効果の確認・評価を行う。
    • プラントメーカは研究開発課題に応じた技術開発を推進し、プラント毎に具体的な設計を行い、電力事業者が実施する実機適用、適用効果の評価に関する支援を行う。
    • 電力事業者、プラントメーカは技術開発が必要な技術課題、検討に必要な技術分野について大学側へ発信を行う。
    • 研究機関は、技術開発に必要な要素技術の開発、検証を実施する。
    • 大学は、技術開発に必要な要素技術に関する研究を推進するとともに、研究開発に必要な人材を育成する。
    • 実施主体が資金担当となることが適当と考える。

原子力規制委員会/原子力規制委員会
(必要に応じ、規制の枠組みの整備、技術評価)
<考え方>

    • 電気事業者は、新規制基準及び軽水炉安全技術・人材ロードマップに則り、事業主体として安全性向上に努める。
    • 電力事業者は、事業主体として保全の信頼性向上に努める。
    • プラントメーカは、必要な技術開発に努める。
    • 原子力規制委員会は、電気事業者のニーズを踏まえて、規制基準、及び導入の枠組みを定め、技術評価を行う。
    • 実施主体が資金担当となることが適当と考える。
    • 原子力規制委員会が規制の観点から主体となる事項について資金担当となることが適切。

産業界・学協会/産業界
_SG伝熱管の健全性評価に関する規格基準の策定
<考え方>

    • 産業界(電気事業者、プラントメーカ)が主体となって、SG伝熱管健全性確保に必要な水化学技術の高度化を図る。
    • 学協会は、SG伝熱管健全性確保、及び付随して必要となる水化学技術に係わる規格基準等について検討を行う。
    • 原子力規制委員会は、SG伝熱管健全性確保、及び付随して必要となる水化学技術に係わる規格基準を整備し、技術評価、及び認可を行う。

その他

 

課題調査票

課題名

スケール付着影響緩和技術の開発

マイルストーン
及び
目指す姿との関連

短Ⅴ.保全・運転負荷軽減・品質向上
⇒効果的・継続的な自主的安全性向上のため、保全・運転管理の確立、高度化を図る必要がある。中Ⅱ.既設プラントの高稼働運転と長期安定運転の実現
⇒電力安定供給、かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期間運転が必要となる。

概要(内容)

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_高温水中機器(熱交換器、給水ポンプ、制御弁、流量計等)へのスケール付着抑制対策を検討するため、各機器環境条件下でのスケール付着メカニズムを解明する。また、スケール付着抑制対策を検討するための付着現象再現試験及び機器性能変化予測方法の構築を行う。(2) SGへの鉄持込抑制技術の開発
_スケール付着事象毎に抑制に必要なpH条件、プラント構成毎のpH上昇手法(pH調整剤の変更等)、海外火力等で試運用が開始されている、FFA(フィルム・フォーミング・アミン)の適用性について検討する。

(3) スケール除去・改質技術の開発
_SG二次側構成材料の健全性を確保しつつ、よりスケール除去、改質効果の高い洗浄技術の開発を行う。

(4) スケール付着抑制技術の開発
_EPRI主導の元、米国にて検討されているスケール分散剤の国内プラントへの適用性評価、並びに国内プラントに適した新分散剤についても検討を実施する。

(5) 代替ヒドラジン適用への対応
_代替ヒドラジンの実機適用に当たり、使用薬剤、分解生成物による気液2相流系統中ミストのpH低下がFAC速度に及ぼす影響、スケールの稠密化に及ぼす影響の有無を把握しておく。

導入シナリオとの関連

_水化学によるスケール付着メカニズムの明確化と、鉄低減技術高度化、スケール除去・改質技術の開発・実機適用によるプラントの長期安定運用確保、性能低下抑制、保守点検作業の適正化

課題とする根拠
(問題点の所在)

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_スケール付着による機器の性能変化抑制対策として、水質改善等による鉄低減対策がなされつつあるが、スケール付着メカニズム及び機器の性能変化抑制対策による機器毎の性能変化の精度高い予測は出来ておらず、PWR二次系機器全体のスラッジマネジメントを効率的に進める上での課題となっている。(2) SGへの鉄持込抑制技術の開発
_プラント毎に系統構成、材料を考慮したスケール付着抑制効果を得るための給水pH条件、並びにpH上昇手法(代替アミン等)を検討し、実機適用に際しては、系統構成材料への影響、プラント運用について検討を行う必要がある。また、海外火力等で試運輸が開始されつつあるFFAについて、高pH処理等pH上昇対策との併用の必要性を検討するとともに、二次系系統設備、材料との適合性を確認しておくことが必要である。

(3) スケール除去・改質技術の開発
_ASCAの高頻度での適用は、洗浄廃液処理の対応負荷増大にもつながっており、SG二次側構成材料の健全性を確保しつつ、よりスケール除去、改質効果の高い洗浄技術の開発が必要である。また、高pH処理等水処理改善後の生成スケールに対する改質効果の確認ができておらず、早期の実機検証、洗浄改善要否の判断が急務である。

(4) スケール付着抑制技術の開発
_国内プラントへの適用性判断にあたり、スケール性状、プラント構成の違いによる適用効果、プラント構成材への影響、プラント運用への影響を確実に見極める必要がある。また、既存の分散剤で効果が限定される、あるいは他の構成材料に影響がある場合、新分散剤の開発、実機適用性検討が必要である。

(5) 代替ヒドラジン技術適用への対応
代替ヒドラジンの適用にあたり、使用する薬剤のプラント運転中の還元効果、プラント停止中の保管時腐食抑制効果、環境への影響、プラント構成材への影響、プラント運用への影響、スケール稠密化に対する影響について十分なプラント適用性検討を行う必要がある。

現状分析

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_スケール付着に伴う機器性能に対する鉄濃度の関係が整理されつつあるが、系統水中鉄形態等も考慮した詳細予測モデルはなく、また、再現試験は高鉄濃度条件下で実施している等必ずしも実機を模擬・再現出来ていない。(2) SGへの鉄持込抑制技術の開発
_pH処理(給水pH9.8~10)適用プラントでは、十分な腐食生成物低減効果が得られ、スケール付着に対しても抑制傾向が認められつつある。一方、プラント毎に、系統構成、材料に配慮し、適切な処理を適用していくことが必要であるが、従来AVTのpH9.2~9.8の中間pHではスケール付着試験データ、実機実績が乏しく、スケール付着抑制効果が得られるpHの見極めはできていない。

(3) スケール除去・改質技術の開発
_SG二次側の付着スケール除去に効果的であるASCAは、BEC閉塞、伝熱性能低下効果を維持するためには、AVT条件下では1~2回定検毎の高頻度適用が必要であり、廃液負荷の低減が必要。また、水処理改善条件化スケール改質効果の確認に基づく、適用頻度の適正化が必要。

(4) スケール付着抑制技術の開発
_国内プラントへの適用に際し、スケール性状、プラント構成、運用の違いによる適用効果の違い、プラント構成材への影響を確実に把握し、国内プラントへの適用性を早期に判断する必要がある。

(5) 代替ヒドラジン技術適用への対応
_系統内還元性維持のため、各種代替ヒドラジン剤の適用性検討が行われてきたが、現状適合剤の選定に至っていない。

期待される効果
(成果の反映先)

    • 高温水系統でのスケール付着現象の再現と影響予測式の構築。
    • SGをはじめとする機器へのスケール付着抑制により、長期安全性の確保、プラント安定運転の維持に貢献

実施にあたっての問題点

課題全体の共通問題として下記がある。

    • 課題の緊急性(SA対策、再稼動対応ではないが、プラント安定運用の観点から早期の対応が必要)
    • 課題の原子力安全との相関性の明確化(プラント安定運転の維持に貢献)
    • 研究開発費の確保(SA対策、再稼動対応ではないが、プラント安定運用の観点から早期の対応が必要)

必要な人材基盤

(1) 人材育成が求められる分野

    • 水化学、状態監視技術
    • 化学物性評価技術
    • 腐食環境評価技術
    • 高温、高圧条件下実験技術

(2) 人材基盤に関する現状分析

    • 電力事業者は、プラント運転を通じ評価データの蓄積、検討課題の抽出、確認を実施してきた。
    • プラントメーカは、国プロ、電共研、委託研究で研究開発を実施し、必要な人材の育成を行ってきた。
    • 大学等では、共同研究、インターシップ等により、技術交流、人材育成を行ってきた。
    • 水化学技術は大学での専門コース、講座等が無いため、(1)項に示した各技術分野の人材をOJTを通じて人材育成してきた。
    • 海外の新技術導入について、積極的な情報の入手を行うことを念頭においた人材育成が必要である。

(3) 課題

    • 1F事故後のプラント長期停止により、電力事業者、プラントメーカとも実務経験を積む場が減少している。
    • 原子力プラント水化学関連改善技術については、SA対策、プラント再稼動に係わる項目ではないため、開発研究の実施が先送りとなり、OJTを通じた人材育成が行えていない。
    • 上記に伴い、若手技術者の原子力離れを招き、ベテラン技術者からの技術伝承が円滑に行えない状況になりつつある。

他課題との相関

    • S111_d32:状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
    • S111_d39:検査・補修技術の高度化
    • S111M107_d36:高経年化評価手法・対策技術の高度化
    • M106_c01:計測技術・解析技術の高度化

実施時期・期間

中期(2030年)

実施機関/資金担当
<考え方>

産業界・学術界/産業界
_スケール付着メカニズムの明確化と、鉄低減技術高度化、スケール除去・改質技術の開発・実機適用によるプラントの長期安定運用確保、性能低下抑制対策に関する技術開発を実施。
<考え方>

    • 電力事業者はプラント実態を確認し、研究開発課題の選定、実機適用、実機適用効果の確認・評価を行う。
    • プラントメーカは研究開発課題に応じた技術開発を推進し、プラント毎に具体的な設計を行い、電力事業者が実施する実機適用、適用効果の評価に関する支援を行う。
    • 電力事業者、プラントメーカは技術開発が必要な技術課題、検討に必要な技術分野について大学側へ発信を行う。
    • 研究機関は、技術開発に必要な要素技術の開発、検証を実施する。
    • 大学は、技術開発に必要な要素技術に関する研究を推進するとともに、研究開発に必要な人材を育成する。
    • 実施主体が資金担当となることが適当と考える。

原子力規制委員会/原子力規制委員会
(必要に応じ、規制の枠組みの整備、技術評価)
<考え方>

    • 電力事業者は、事業主体として保全の信頼性向上に努める。
    • プラントメーカは、必要な技術開発に努める。
    • 原子力規制委員会は、電気事業者のニーズを踏まえて、規制基準、及び導入の枠組みを定め、技術評価を行う。
    • 実施主体が資金担当となることが適当と考える。
    • 原子力規制委員会が規制の観点から主体となる事項について資金担当となることが適切。

産業界・学協会/産業界
_スケール付着抑制、除去技術に関する規格基準の策定
<考え方>

    • 産業界(電気事業者、プラントメーカ)が主体となって、スケール付着抑制、除去技術に必要な水化学技術の高度化を図る。
    • 学協会は、スケール付着抑制、除去技術、及び付随して必要となる水化学技術に係わる規格基準等について検討を行う。
    • 原子力規制委員会は、スケール付着抑制、除去技術、及び付随して必要となる水化学技術に係わる規格基準を整備し、技術評価、及び認可を行う。

その他

 

9. おわりに

_水化学ロードマップ 2020 を刊行する。
_福島第一原子力発電所の事故を経験して、原子力技術ならびに水化学技術を取り巻く環境は大きく変化した。今回の改訂では、軽水炉安全技術・人材ロードマップとの整合性を図りながら、水化学技術の意義を改めて見直し、より広い視点でその役割を再定義した。新たに章を設けて、深層防護の観点から水化学技術の役割について考察を深め、また、核分裂生成物の挙動や汚染水処理等、過酷事故のレベルにおいても水化学が果たす役割は大きいことから、やはり章を新設して事故時対応の水化学を記述した。一方では、これまで水化学ロードマップにおいて安全基盤研究の 3 本柱と位置づけてきた「構造材料の高信頼化」、「燃料の高信頼化」、「被ばく線源低減・環境負荷低減」は、その重要性が変わるものではなく、前回のロードマップ改訂から十余年の技術的進展を網羅して反映するべくこれらの章の内容を見直した。共通基盤技術についても同様である。
_前回 2009 年版から十余年ぶりの改訂であることのみならず、2011 年の福島第一原子力発電所事故を経て原子力発電における水化学技術の役割を根本から問い直した結果、大幅な改訂となった。改訂作業の過程で、原子力安全、材料、核燃料等、関連する他分野の専門家と意見を交わし、議論を重ねた。これは、コミュニケーション・ツールとしてのロードマップの意義を再認識する機会ともなった。
_次世代の水化学分野の技術者・研究者にとって目指すべき方向を指し示す道標として、また、他分野の技術者との意思疎通を深めるツールとして、水化学ロードマップ 2020 が役割を果たすことを期待する。水化学ロードマップ 2020 の編纂は、水化学部会メンバーの尽力によるものである。関係者の惜しみない協力に深く感謝する。

2020 年 3 月 4 日
水化学ロードマップフォローアップ検討ワーキンググループ
主査 渡邉 豊

略語表

  略語  説明  記載
箇所
 
  1F  福島第一原子力発電所  1章、
3章、
4章、
5章、
6章、
7章、
8 
A  AOA  燃料軸方向出力異常(Axial Offset Anomalies  6.2
6.3 
ASCA  Advanced Scale Conditioning Agent  6.1.3 
ATF  事故耐性燃料(Accident Tolerant Fuel  6.2 
AVT  全揮発性薬品水処理(All Volatile Treatment  6.1.3 
B  BIP  NEA Behaviour of Iodine Project (よう素挙動プロジェクト)  8.2 
BWR  沸騰水型軽水炉 (Boiling Water Reactor)  6
6.3
7.1.1
8.1 
C  CBB  すき間付与低ひずみ曲げ試験 (Creviced Bent Beam)  7.1.1 
CIPS  クラッド誘起型出力シフト(Crud Induced Power Shift
燃料表面へのクラッド、特にホウ素の付着による原子炉局所出力の低下 
6
6.2.
6.3 
COD  化学的酸素要求量(Chemical Oxygen Demand  6.4 
CT  コンパクトテンション (Compact Tension)  7.1.1 
D  DBA  設計基準事故(Design Basis Accident  8.2 
DF  除染係数(Decontamination Factor  6.4 
E  ECP  電気化学的腐食電位(Electrochemical Corrosion Potential  6.1.1
7.1.1 
EdF  フランス電力(Électricité de France  6.2 
EPRI  米国電力研究所(Electric Power Research Institute  6.2 
F  FAC  流れ加速型腐食(Flow Accelerated Corrosion  6.1.2
6.1.3 
FCS  可燃性ガス制御系(Flammable gas Control System  8.2 
FFA  フィルムフォーミング・アミン(Film Forming Amine  6.1.3 
FFP  フィルムフォーミング・プロダクト(Film Forming Product  6.1.3 
FP  核分裂生成物(Fission Product  6
6.2
7.1.2
8 
H  HCDI  高炉心燃焼指数(High Core Duty Index  6.2 
HWC  水素注入(Hydrogen Water Chemistry  6.1.1
6.1.2 
I  IAEA  国際原子力機関(International Atomic Energy Agency  6.3 
IASCC  照射誘起応力腐食割れ(Irradiation Assisted Stress Corrosion Cracking  6.1.1
6.3
7.1.1 
IGA  粒界割れ(Inter Granular Attack  6.1.3 
IGSCC  粒界型応力腐食割れ(Intergranular Stress Corrosion Cracking  6.1.1 
IHSI  誘導加熱による残留応力緩和法(Induction Heating Stress Improvement  6 
K  KAERI  韓国原子力エネルギー研究所(Korean Atomic Energy Research Institute  6.2 
L  LDI  液滴衝撃エロージョン(Liquid Droplet Impingement Erosion  6.1.2 
LOCA  原子炉冷却材喪失事故(Loss of Coolant Accident  6.1.1 
M  MA600  ミルアニール処理を施した600合金(mill annealed alloy 600  6.1.3 
MOX  混合酸化物燃料(Mixed Oxide  6.2 
N  NISA  原子力安全・保安院(Nuclear and Industrial Safety Agency  6.1.2 
NMCA  貴金属注入(Noble Metal Chemical Addition  6.1.1
7.1.1
6.1.2
NUREG  米国原子力規制委員会(NRC)の発行する原子力規制に係わる一連の技術レポート  7.1.2 
O  ODSCC  外面応力腐食割れ(Outside Diameter Stress Corrosion Cracking  6.1.1 
OECD/NEA  経済協力開発機構原子力機関(Organisation for Economic Co-operation and Development Nucleaer Energy Egency)  8.2 
OLNC  オンラインNMCAOn-Line Noble Metal Chemical Addition  6.1.1 
ORIGEN2  核分裂生成物生成、燃焼解析コード (ORNL Isotope Generation and Depletion)  7.1.2 
OWC  酸素注入(Oxygenated Water Chemistry  6.1.2 
P  PAR  静的触媒式水素再結合器(Passive Autocatalytic Recombiner)  8.2 
PCV  原子炉格納容器(Pressure Containment Vessel)  8.2 
PDCA  Plan計画→ Do(実行)→ Check評価→ Act改善)の 4段階を繰り返すことによる継続的な業務改善(Plan-Do-Check-Act  6.3 
Phèbus FP Project  仏国Cadarasche原子力研究所で実施されたPhèbus実験炉を用いた実UO2燃料を用いた燃料溶融時の核分裂生成物移行模擬実験  7.1.2 
Post-DNB  ポスト核沸騰離脱(Post-Departure from Nucleate Boiling  6.1.1 
PRTR  環境汚染物質排出移動登録(Pollutant Release and Transfer Register  6.1.3 
PSS  ポリスチレンスルホン酸(Polystyrene Sulfonate  6.1.3 
PWR  加圧水型軽水炉 (Pressurized Water Reactor)  6
6.3
7.1.1
8.1 
PWSCC  一次冷却材応力腐食割れ(Primary Water Stress Corrosion Cracking  6.1.1
6.3
7.1.1 
S  SA  シビアアクシデント、重大事故 (Severe Accident)  7.1.2
8 
SAICM  国際的な化学物質管理のための戦略的アプローチ(The Strategic Approach to International Chemicals Management  6.1.3 
SCC  応力腐食割れ(Stress Corrosion Cracking  6
6.1.1
6.1.2
6.3
7.1.1 
SFP  使用済み燃料プール(Spent Fuel Pool  6.4 
SG  蒸気発生器(Steam Generator  6
6.1.3
6.4 
S/P  サプレッションプール(Suppression Pool)  8.2 
SSRT  低歪速度引張試験 (Slow Strain Rate Test)  7.1.1 
STEM  NEA Source Term Evaluation and Mitigation Project(ソースターム評価及び緩和プロジェクト)  8.2 
T  THAI  NEA Thermal-hydraulics Hydrogen Aerosols and Iodine Project(熱水力、水素、エアロゾル及びよう素プロジェクト)  8.2 
TMI-2  米国ペンシルバニア州にあったPWRプラント(Three Mile Island-2  6
8 
TOC  全有機炭素(Total Organic Carbon  6.4 
TT 600  粒界にクロム欠乏層を形成することなく炭化物を析出させる熱処理を施した600合金(Thermally treated alloy 600  6.1.3 
TT 690  粒界にクロム欠乏層を形成することなく炭化物を析出させる熱処理を施した690合金(Thermally treated alloy 690  6.1.3 
U  UCL  単軸定荷重引張試験 (Uniaxial Constant Load)  7.1.1 
UT  超音波探傷検査(Ultrasonic Testing  6.2 

 

 

無断で複製・転載することを禁じます   

水化学ロードマップ2020 

 2020年3月1日発行 

 発行 一般社団法人日本原子力学会 水化学部会
 〒105-0004 東京都港区新橋2-3-7 新橋第二中ビル
       TEL 03-3508-1261 FAX 03-3581-6128
  URL http://www.aesj.net/ 

6.1.1 応力腐食割れ(SCC)の抑制

_ステンレス鋼やニッケル基合金等軽水炉構造材料の応力腐食割れ(SCC)は、圧力バウンダリーや炉内構造材の健全性を損なうことでLOCA等のプラントの安全性につながる可能性がある安全上重要な経年劣化事象の一つであり、プラントの安全運転を阻害するトラブルの一つの原因となってきた。SCCは、材料・応力・環境の各因子が重畳した場合に発生・進展すると言われており、プラントを安全に長期間使うためには、設計・建設段階における材料選択、製作・施工方法と、運転開始後における検査・補修・取替を適切に行うとともに、長期にわたる運転期間中のSCC環境(SCCの発生と亀裂が進展する水質環境)を緩和し、構造材料の健全性を維持する期間を延伸することが重要である。すなわち、SCCの発生と亀裂の進展を抑制するための水質管理は、プラントの安全性を維持するための深層防護におけるレベル1に該当し、水質環境がSCC抑制に有効な範囲を逸脱した場合の対応はレベル2に該当する。一方、設計基準事故やシビアアクシデントが発生した場合の機器や構造材の健全性に関しては比較的短期間の課題であり、SCCの抑制がほとんど寄与しないと考えられるため、SCCの抑制対策はレベル3やレベル4の対象とはならない。
_また、SCC環境の緩和は、プラント維持管理(検査・補修・取替)のさらなる適切化に貢献できる可能性があり、これらを通じて原子力発電の安全性と公益性を同時に高めていくことが重要である。
_さらに、今後、我が国においても適用が予想される燃料高度化(高燃焼度化、長期運転サイクル)や出力向上等により、構造材料のSCC環境が受ける変化を先取り(予測・評価)し、悪影響の可能性が予測される場合には、それを回避・低減することも、SCC環境緩和の重要な役割である。
_一方、軽水炉は、同じ水が様々な温度条件、照射条件、沸騰・流動条件下で、構造材料や燃料被覆管等の金属材料と接しながら循環しているシステムであり、特定の部位や構造材料のSCC環境緩和を行う際には、その有効性評価とともに、プラントに及ぼす影響を予測・評価することが重要である。
_このSCC環境緩和に関する現状、研究方針と課題、及び、産官学の役割分担について以下に述べる。

(A)現状分析
<沸騰水型軽水炉(BWR)>
_原子炉で発生させた蒸気で直接タービンを駆動するBWRでは、主に炉心で生成した放射線分解生成物の大部分が、酸素及び水素ガスとして主蒸気に移行する。この結果、BWR原子炉水中には、数百ppb前後の酸化種が残存する。ステンレス鋼やニッケル基合金のSCC環境はこの酸化種によって支配されている。
_この他のSCCの主要環境因子として、系外から持ち込まれるイオン不純物(特にアニオン)がある。イオン不純物のうち、SCCへの影響の大きいとされる塩化物イオンと硫酸イオンを中心として、近年、管理の強化が図られており現状は問題のあるレベルにはないと考えられる。従って、ここでは酸化種抑制の取り組みを中心に現状を分析する。

(1) 炉内SCC環境評価手法の開発、高度化・標準化
_従来の試料採取系を用いた分析では、酸化種として酸素のみしか検出されなかったため、主要SCC環境因子は酸素と考えられていたが、実際には、高温で分解しやすい過酸化水素の影響が大きいことがわかってきた。放射線分解生成物の蒸気相への移行、これら相互の反応による生成消滅、材料表面への拡散速度等により、炉内におけるこれら酸化種の濃度分布、すなわち、SCC環境は一様ではない。
_一方、酸化種のSCCへの影響度合いを示す指標として、現在広く用いられているのが、電気化学的腐食電位(Electrochemical Corrosion Potential : ECP)である。ECPは酸化種によって金属から奪われる電子の流れと電位の関係(カソード分極曲線)と、金属から腐食によって放出される金属イオンの流れと電位の関係(アノード分極曲線)の交点として定義され、まさに、腐食が生じている時点で金属が示す電位であり、SCCの発生や進展と密接に関係している。また、高温でのその場測定が可能なセンサーも開発・実用化されているが、その耐久性や精度の検証法は確立されていない。また、実機ではECPを直接計測できる場所は限られている。このため、直接計測が困難な部位については、放射線分解をシミュレートするラジオリシスモデルと、それによって算出された酸化種の濃度と流動による拡散並びに金属材料との相互作用からECPを算出するECPモデルを併用して、SCC環境を推定する評価技術も開発・実用化されている。今後の燃料高度化や出力向上においては、水の放射線分解挙動、すなわち、SCC環境は、必然的に変化すると考えられるので、その影響を予め評価しておくためにも、これらのモデル評価技術は重要である。

(2) SCC環境緩和技術の開発・高度化
_国内BWRでは1990年代半ば以降、高経年プラントを中心に、SCC環境緩和策として、通常運転時に給水からの水素注入を行っている。水素注入は、給水から原子炉内に注入した水素を酸素や過酸化水素と反応させ水に戻すことで、SCC環境を緩和する技術であるが、その効果は部位によって異なる。特に、原子炉上部では、水素がボイドに移行してしまうため、水素注入の効果が期待できない。また、水素を一定濃度(炉心入口濃度0.4ppm)以上注入すると、注入量に応じて、水分子中にある酸素16Oが中性子と反応して生じる16Nの主蒸気系への移行量が増加し、主蒸気配管の線量率が上昇してしまう。これが水素注入のSCC環境緩和効果とトレードオフになる。
_従来は、通常運転時のみを対象として水素注入を行ってきたが、プラント起動時には、放射線分解生成物の主蒸気への移行が少なく、温度も低いため、冷却材中の酸化種濃度が通常運転中より高くなる。 また、プラント停止中の開放点検・補修等により持ち込まれる不純物イオンも通常運転時より高いレベルになりやすい。さらに、熱応力等により構造材料に動的なひずみが加わる等、SCC発生抑制の観点から環境改善の余地がある。
_上記の諸問題を改善するため、1990年代後半には、主蒸気系線量率が上昇しない範囲の水素注入量でSCC環境緩和効果を高める貴金属処理(NMCA)が開発され、2000年代後半には運転中貴金属注入技術(OLNC)へと進化し、現在では米国を中心に幅広く実機に適用されている。また、国内ではプラント起動時のSCC発生抑制を目的とした起動時水素注入、水素を必要としない新たなSCC緩和を目指すTiO2処理等の技術開発が進められ、一部実機に適用されている。

(3) SCC発生進展に及ぼす環境因子の影響に関するデータ整備・高精度化
_亀裂進展を十分な精度で予測するために必要なSCCの進展に関するデータが不足している。また、特定のHWC環境でニッケル基合金のSCC発生が加速する可能性が示唆される試験データが得られており、追加データの取得が進められている。

(4) データや評価技術の検証、規制基準の整備
_BWRの維持規格にはHWC環境下での亀裂進展線図があるが、HWCの効果の判断クライテリアが基準化されていない。

(5) SCCメカニズム解明
_SCC発生・進展の詳細メカニズムは解明されていない。亀裂内水質がSCCに及ぼす影響、長時間環境暴露による組織変化、材料環境界面の酸化物特性、結晶粒界での特異な酸化、酸化の局在化や加速現象、粒界でのキャビティ生成、水素の影響機構等、様々なSCC(IGSCC、 IASCC等)に対する現象についての知見拡充が必要である。

<加圧水型軽水炉(PWR)>
_PWR一次系は放射線分解による酸化種の抑制を目的として、25~35cc-STP/kg・H2Oの溶存水素を添加することで低電位条件に維持されている。そのため、BWRで報告されているような高電位条件でのSCCは、過去に一部の酸素滞留部で報告例が有るものの、現在は対策が講じられ発生の可能性は低いと考えられている。一方、600合金については低電位条件でも一次冷却材応力腐食割れ(PWSCC)を生じさせることが知られており、690合金への材料変更が進められた。しかし、一部のプラントには蒸気発生器や下部計装筒に600合金が使用されているため、環境緩和の可能性が模索されている。
_また、一次冷却材のpH調整剤としてリチウム(Li)の同位体を濃縮した高価な7Li を使用しているが、近年7Liの調達性が不安定になっているとともに、その価格高騰に伴って発電コストが増加している。このため国外においては、EPRIが中心となり7Liの代替剤として同位体を濃縮する必要のない天然カリウム(K)の適用について2016年から本格的に検討が開始され、2021年頃に実プラントでの試運用が計画されている。Kは7Liより安価なだけでなく、 Liよりも材料の腐食性が低いといわれており、PWSCC発生環境の緩和や、従来のホウ酸リチウムバンド管理幅よりもさらにpHを高める運用を行うことで被ばく線源強度の低減にも繋がる可能性が指摘されていることから、国内においてもその適用に向けた機運が高まりつつある。

(1) SCC環境緩和技術の開発・高度化
① PWSCC環境緩和のための溶存水素濃度最適化
_一次系模擬環境下における600合金のPWSCC進展速度は、国内の溶存水素濃度管理幅近傍で極大値を示すことが報告されている。そのため、溶存水素濃度を最適化することが議論されており、米国では高溶存水素に移行するプラントが増加している。一方、亀裂発生の観点で行われた試験では、低溶存水素濃度の方がPWSCC発生を抑制することを示す知見が報告されている。
_溶存水素濃度の低減に際しては、一次冷却材の放射線分解により生成する酸化種の増大及びその影響が懸念されるが、現在の溶存水素濃度管理幅(25~35cc-STP/kg・H2O)は、50年以上も前の常温の実験に基づいて、一次冷却材の放射線分解を抑制する観点から設定されたもので、最新のラジオリシスモデル解析及び照射試験炉を用いた高温ループ試験の結果から、高温下ではかなり過剰(1桁程度)となっており、数cc-STP/kg・H2O程度までの低減では問題ないとの結果が得られている。仏では実プラントで溶存水素を3cc-STP/kg程度まで低下させ、酸化種の増加がなかったことが報告されている。また、国内でも炉心近傍にECPセンサーを設置し、15cc-STP/kg・H2O程度まで溶存水素を低下させ、放射線分解による酸化種生成が見られなかったことが報告されている。_
_一次冷却材の溶存水素濃度の最適化はPWSCC環境緩和技術として大きな可能性を秘めているが、PWSCC緩和のみならず、燃料被覆管の腐食・水素化挙動、腐食生成物の移行・放射化挙動にも影響する可能性があり、その適用に際しては、材料・燃料・水化学の分野横断的な協力の下、広範囲かつ詳細な調査・研究とフォローが必要と考えられる。

② 高濃度亜鉛注入
_米国では、ニッケル基合金の表面酸化皮膜の改良により、PWSCC発生を抑制するため、高濃度(一次冷却材中濃度30ppb以上)での亜鉛注入が既に数プラントで実施されており、SG伝熱管ECT結果の統計解析からその有効性が示されたとする報告が出ている。一方、燃料高度化や出力向上において、注入した亜鉛が燃料表面に付着し、燃料被覆管・部材の腐食・水素化や、CIPS(crud induced power shift)を加速するのではないかとの懸念も表明されており、十分な検討が必要と考えられる。

③ 天然カリウムの適用性検討
_Kはロシア型PWRであるVVERでの実績があり、また材料の腐食性は一般にLiよりも低いと言われているため、PWSCCに対してはより安全側に働くものと考えられる。一方で、VVERと国内PWRの基本構成は同じであるものの、材料の完全な互換性がなく、また亜鉛注入の有無や温度条件も異なることから、国内PWRへの導入にあたっては十分な検討が必要である。

(2) SCC発生進展に及ぼす環境因子の影響に関するデータ整備・高精度化
_亜鉛注入やホウ酸リチウムバンド管理、分散剤等、SCC発生・進展への影響因子についてのデータ拡充が必要と考えられるとともに、690合金等対策材のSCC発生挙動についても知見が不足している。さらに、KとZnとの相互作用やニッケル基合金のPWSCCへの影響に関する知見も十分ではない。

(3) SCCメカニズム解明
_SCC発生・進展の詳細メカニズムは解明されていない。亀裂内水質がSCCに及ぼす影響、長時間環境暴露による組織変化、材料環境界面の酸化物特性、結晶粒界での特異な酸化、酸化の局在化や加速現象、粒界でのキャビティ生成、水素の影響機構等、様々なSCC(PWSCC、 ODSCC、 IASCC等)に対する現象についての知見拡充が必要である。

(B) 研究方針と実施にあたっての問題点
_前述のように、SCC環境緩和はプラントの安全性確保・公益性向上に大きく貢献できるポテンシャルを有している。しかし、現状は、その有効性が広く認知されるに至っておらず、また、プラント維持管理(点検・補修・取替)とのリンクも不十分である。
_日本機械学会の「発電用原子力設備規格 維持規格」には、既に、環境緩和の効果を取り入れたSCC進展線図が示されているが、実プラントではこれに基づく維持管理の合理化には至っておらず、早期にその実現を図ることが必要である。特に、予防保全としてのSCC環境緩和の効果を考慮した設備の点検・補修・取替の方法を、関連分野との協力の下、ガイドラインとして整備する必要がある。
_また、今後、新検査制度における保全活動、あるいは、評価指標としての活用の観点からも、SCC環境緩和の検討を深めて行く必要がある。
_このためには、以下に示す水化学技術の開発や高度化、ならびに、検証と標準化が必要と考えられる。

(1) 炉内SCC環境評価手法の開発、高度化・標準化
_軽水炉内でSCC環境は均一ではないため、着目する部位のSCC環境を直接計測する技術を耐久性・精度の観点から高度化する。また、実機ではSCC環境を計測できる場所は限られているので、これを補うSCC環境を評価する技術を高度化する。さらに、SCC環境緩和効果をプラントの維持管理に取り入れるため、照射試験炉や実機においてこれら技術を検証し、標準化を行う。

(2) SCC環境緩和技術の開発・高度化
_BWRでは、よりSCC抑制効果が高く、抑制範囲の広いSCC環境緩和技術(BWR)の開発と開発技術の標準化を進める。また、現在適用されているSCC環境緩和技術、及び今後開発されるSCC環境緩和技術の有効性や副作用について、各種試験や実機における関連データの採取・蓄積とその解析評価を行い、予防保全対策としての適用性・有効性を検証し、プラント維持管理への反映を念頭に適用方法を標準化する。
_PWRでは PWSCC環境緩和技術(一次系溶存水素濃度の最適化・高濃度亜鉛注入の検討・天然カリウムの適用性検討)の開発・実証を推進する。この際、燃料の健全性・性能の維持、及び被ばく・廃棄物低減の観点から、より副作用の少ない、調和のとれたSCC環境緩和技術を志向する。特に、PWSCC抑制のための溶存水素濃度最適値が、現在の保安規定記載の範囲を下回る場合には、有効性のみならず副作用を含む十分な検証を行う必要がある。

(3) SCC発生進展に及ぼす環境因子の影響に関するデータ整備・高精度化
_プラントの安全性を確保するために必要な検査部位及び検査頻度の最適化を行うため、様々な材料、応力、水質条件でのSCC発生・進展データの充実を図る必要がある。

(4) データや評価技術の検証、規制基準の整備
_維持規格で示されているSCC進展線図の適用を可能とするため、評価対象部位ごとに異なる水質環境を考慮した環境緩和技術の効果の判断クライテリアを基準化して実機への適用を可能とする必要がある。また、廃炉材活用研究等により、これまで適用してきた水化学条件の妥当性を検証することや、高経年化リスクと水化学の関係についても評価を進めることが重要である。

(5) SCCメカニズム解明
_SCCは、水化学環境因子と材料因子、応力因子等が複合する事象であり、これを適切に制御するためには、SCCのメカニズムを解明すること、また、メカニズムに基づいて水化学因子の効果・影響を定量化することが重要である。

(C) 産官学の役割分担の考え方
① 産業界の役割

    • 炉内SCC環境評価手法(ラジオリシスモデル・ECPモデル・計測技術)の開発・高度化・標準化
    • SCC環境緩和技術の開発・高度化・標準化
    • SCC発生・進展に及ぼす環境因子の影響に関するデータ整備・高精度化
    • 予防保全工法ガイドライン(SCC環境緩和)案の作成

② 国・官界の役割

    • データや評価技術の検証
    • 学協会基準のエンドース・規制基準の整備
    • 施設基盤の整備(照射試験炉)

③ 学術界の役割

    • SCCメカニズム解明への支援
    • 炉内SCC環境に関する基盤研究(G値、反応機構、速度定数、表面・隙間における照射影響等)
    • 環境モニタリングの基盤技術(参照電極等)
    • 人材育成

④ 学協会の役割

    • ロードマップ策定、ロードマップ間の連携・調整
    • 規格基準の作成・精緻化
    • 分野横断的取り組みの標準化における学協会間の連携
    • 人的交流と育成

⑤ 産官学の連携

    • SCCメカニズム解明(環境因子の効果・影響)
    • 炉内SCC環境に関する基盤研究
    • SCC環境緩和に対応できる人材の育成・交流

(D) 関連分野との連携
① 燃料高度化

    • 燃料の高度化(被覆管材料、放射線の線源強度や分布の変更)が、ラジオリシスや不純物に及ぼす影響について、燃料開発、被覆管開発等の分野と連携をとり、効率的かつ合理的に評価を行う必要がある。

② 材料の高度化

    • 新しい構造材料、炉内機器の開発と適用に際しては、SCCの発生と亀裂の進展に関して材料、応力、環境の観点からSCCのリスクを評価する必要があり、各分野で連携し情報を共有して、効率的かつ合理的に技術開発、評価を行う必要がある。

図6.1.1-1に導入シナリオ、表6.1.1-1に技術マップ、図6.1.1-2にロードマップを示す。

参考文献

[6.1-1]  S. Uchida, “Corrosion of Structural Materials and Electrochemistry in High Temperature Water of Nuclear Power Systems”, Power Plant Chemistry, 10 (11), 630-649 (2008).

課題調査票

課題名 応力腐食割れ(SCC)の抑制

マイルストーン
及び
目指す姿との関連

短Ⅳ. 信頼性向上へ向けたプラント技術・運用管理の高度化
⇒通常運転、異常事象終息の信頼性向上に係わる活動が不断に進められ、かつ活性化がなされることによって、事故の引き金となる事象の把握と詳細な知見が深まり、事故リスク低減のための諸対策の整備が進むことが期待される。中Ⅱ. 既設プラントの高稼働運転と長期安定運転の実現
⇒安定かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期安定運転が必要となる。長Ⅱ.革新的技術開発等による原子力のメリット最大化・デメリット極小化
⇒機器及び構造物の劣化を防止・抑制するためには、劣化メカニズムを解明し、それに基づき対策・改善技術を開発する必要がある。
概要(内容) (1) 炉内SCC環境評価手法の開発、高度化・標準化
_炉内腐食環境を評価するためのラジオリシスモデル、腐食電位モデルの高精度化を図る。また、試験炉(可能ならば実機)における腐食環境モニタリングならびにSCC挙動評価を行い、オンラインモニタリングによるシュラウドや原子炉底部等を含めた原子炉一次系の多様な部位における腐食環境(腐食電位)評価ならびにSCC発生寿命・SCC進展評価技術を開発し、環境評価手法の検証を行う。
(2) SCC環境緩和技術の開発・高度化
_BWRの水素注入、貴金属注入、起動時水素注入やPWRの溶存水素濃度最適化、亜鉛注入等の高度化を図るとともに、新たな酸化チタンや分散剤等の対策技術を開発し適用していくことで、SCCの発生・進展を抑制する。
(3) SCC発生進展に及ぼす環境因子の影響に関するデータ整備・高精度化
_プラントの安全性を確保するために必要な検査部位及び検査頻度の最適化を行うため、様々な材料、応力、水質条件でのSCC発生・進展データの充実を図る。
(4) データや評価技術の検証、規制基準の整備
_維持規格の適用を可能とするための環境緩和技術の効果の判断クライテリアを基準化して実機への適用を可能とする。
(5) SCCメカニズム解明
_効果的なSCC対策の確立には機構論的な理解が不可欠であるため、材料と環境の相互作用や亀裂内水質の影響等への理解を進め、SCC発生・進展の詳細メカニズムを明らかにする。
導入シナリオとの関連 水化学によるSCCの抑制による構造材料の健全性維持
課題とする根拠(問題点の所在) 水化学RMと深層防護との関連付けの検討結果を参照
現状分析 (1) 炉内SCC環境評価手法の開発、高度化・標準化
_腐食環境緩和効果を確認するため腐食電位(ECP)の測定や貴金属付着量等のモニタリングが実施されているが、炉内の部位ごとに環境緩和効果が異なる。またモニタリングできる部位は限定されている。そこで、測定によるモニタリングとモデル解析評価を含めた評価技術の確立が必要である。
(2) SCC環境緩和技術の開発・高度化
_BWRの貴金属注入を伴うHWCやPWRの溶存水素濃度最適化等既存の環境緩和技術は存在するが、その最適化や高度化は必要である。また、酸化チタン等の新しい対策も開発されつつある。
(3) SCC発生進展に及ぼす環境因子の影響に関するデータ整備・高精度化
_亀裂進展を十分な精度で予測するために必要なSCCの進展に関するデータが不足している。また、特定のHWC環境でニッケル基合金のSCC発生が加速する可能性が示唆される試験データが得られており、追加データの取得が進められている。また、PWRに関しては亜鉛注入やホウ酸リチウムバンド管理、天然カリウム、分散剤等、SCC発生・進展への影響因子についてのデータ拡充が必要と考えられるとともに、690合金等対策材のSCC発生挙動についても知見が不足している。
(4) データや評価技術の検証、規制基準の整備
_BWRの維持規格にはHWC環境下での亀裂進展線図があるが、HWCの効果の判断クライテリアが基準化されていない。
(5) SCCメカニズム解明
_SCC発生・進展の詳細メカニズムは解明されていない。亀裂内水質がSCCに及ぼす影響、長時間環境暴露による組織変化、材料環境界面の酸化物特性、結晶粒界での特異な酸化、酸化の局在化や加速現象、粒界でのキャビティ生成、水素の影響機構等、様々なSCC(IGSCC、PWSCC、IASCC、ODSCC等)に対する現象についての知見拡充が必要である。
期待される効果
(成果の反映先)
    • 一次冷却系バウンダリーを構成する材料のSCC発生・進展による冷却水の漏えいやLOCAのリスクが低減され、原子力プラントの安全性が向上する。
    • SCCの発生・進展に伴う補修工事及び、保全の最適化による点検頻度の低減が可能となり、原子力プラントの稼働率向上並びに作業従事者の被ばく低減に寄与する。
実施にあたっての問題点 課題全体の共通問題として下記がある。

    • 原子力安全との相関の明確化
    • 緊急性・重要性・経済性に対する適切な評価
    • 研究開発のための資金・人材の確保
    • 機構論に関する基礎知見の拡充
必要な人材基盤 (1)    人材育成が求められる分野

    • 水化学、腐食電位測定、ラジオリシス解析技術、金属材料の腐食

(2) 人材基盤に関する現状分析

    • 事業者においては、SCC環境緩和技術に関する知識・技能を有した人材の育成が行なわれるとともに、過去に生じたトラブルの技術伝承が進められてきた。
    • メーカでは海外メーカからの技術導入や自主技術開発を通じて、必要な技術開発にかかる人材の育成を行っている。
    • 大学等では、共同研究やインターンシップ等により、人材育成や人的交流を図ってきた。
    • 水化学技術は、原子力プラントの保全のみならず、リスクの概念を併用すれば、安全の確保の基本となる技術の一つであり、必要な人材基盤を継続して確保していくことが重要である。今後も人材基盤を維持していくためには、大学等の教育段階から優秀な人材を集め、かつ、人材を計画的に育成していくとともに、実際に水化学の運用管理の経験を積んでいくことが必要である。
    • 海外の実用化技術の反映にとどまらず、その改良をもって、更なる原子力安全に役立つ運用管理技術を国際的に展開できる人材を育成し、活躍してもらうことが必要。
    • 特に海外で豊富な実績を有する解析手法等については、その迅速かつ円滑な導入を促す仕組みの充実(国際共同研究、国際会議、人的交流等の活性化等)も必要。

(3) 課題

    • 必要とされる人材規模は、原子力発電に関する国の方針に依存し、これに対応して、計画的かつ継続的な人材確保が必要である。
    • 1F事故後の原子力プラントの長期停止により、実際に水化学管理の経験を積む場が損なわれている。
    • 優秀な人材を惹きつけるという意味において、1F事故とそれに続く原子力プラントの長期停止は、若い世代の原子力離れを招いている。
他課題との相関 ロードマップ対象項目の課題別区分の②既設の軽水炉等の事故発生リスクの低減のうち、経年劣化対策及び運転トラブルの防止に該当する。具体的な項目は以下のとおり。

    • S111_d37構造材料の高信頼化
    • S111_d30 SA対策機器の保全管理の確立
    • S111M107_d24プラント運用技術、炉心設計管理の高度化
    • S111M107_d36:高経年化評価手法・対策技術の高度化
    • M107_d25:運転性能の高度化
    • S111_d32 状態監視・モニタリング技術の高度化
    • M107_d38建屋構造・材料の高度化
    • S111M107_d34保守・運転管理の合理化・省力化による保守・運転員負荷低減
    • S111_d33-1被ばく低減技術の高度化
    • L104_d41高経年プラントの安全運転に向けた革新的技術の開発
    • L104_d35-1保守の効果を高め運転をサポートする革新的技術の適用
実施時期・期間 中長期(~2050年)
実施機関/資金担当
<考え方>
産業界/産業界
SCCの発生・亀裂進展メカニズムの解明、SCCへの水質影響評価、既存技術の高度化と新たな水化学の開発、モニタリング技術の開発等を実施
<考え方>

    • 電気事業者は、事業主体としてプラント要件を取り纏めるとともに、プラントへの適用性評価を行う。
    • メーカは、プラント設計を熟知していることから、具体的な設計とプラントに合った技術開発を行うとともに、電に事業者が実施するプラントへの適用性評価を支援する。
    • 研究機関は、技術開発に必要な要素技術を開発する。
    • 大学は、技術開発に必要な要素技術を開発する。
    • 実施主体が資金担当となることが適当と考える。

原子力規制委員会/原子力規制委員会
(必要に応じ、規制の枠組みの整備、技術評価)
<考え方>

    • 電気事業者は、新規制基準及び軽水炉安全技術・人材ロードマップに則り、事業主体として安全性向上に努める。
    • 電気事業者は、事業主体として保全の信頼性向上に努める。
    • メーカは、必要な技術開発に努める。
    • 原子力規制委員会は、安全性を担保するために必要となる検証データを拡充させ、機構論的な技術検証を踏まえて規制基準に反映させる。
    • 実施主体が資金担当となることが適当と考える
    • 原子力規制委員会が規制の観点からが主体となる事項について資金担当となることが適切。

産業界・学協会/産業界
水化学管理によるSCC抑制に係わる規格基準の策定

    • 産業界(電気事業者、メーカ)が主体となって構造材料の健全性維持に必要な水化学技術の情報を蓄積する。
    • 学協会は、構造材料の健全性維持及び付随して必要となる水化学技術に係わる規格基準等について検討を行う。
    • 原子力規制委員会は、構造材料の健全性維持及び付随して必要となる水化学技術に係わる規格基準を整備し、技術評価及び認可を行う。
その他

 

6. 安全基盤研究

6.1 構造材料の高信頼化

_PWR及びBWR冷却系の主系統については、従来から適切に高信頼化のための方策が施されている。以下では高信頼化に係わるロードマップを4つの視点から記載する。表6.1に軽水炉での材料関連トラブルの主要事象と対応策を示す[6.1-1]。表中に朱記したものは、重要項目として、第6章で詳細に取り上げたものである。
_一方で、主として補機冷却系で見られる海水腐食や微生物腐食(バクテリア腐食)等は、通常運転中に大きな問題となる事象が顕在化した実績がなく、また仮に事象が顕在化しても、通常運転時には様々な代替手段があり、問題拡大につながる恐れが低い。すなわち、水化学としての技術開発要素はないため、技術マップやロードマップの作成は行わず、技術課題としては取り上げない。
_しかしながら、補機冷却系の損傷は特に深層防護レベル3及びレベル4対応で特に重要となるので、以下にその要点を特記する。
_深層防護レベル3及びレベル4対応において、主系統の損傷を起点とする重大事故に対しては事故の進展を確実に抑制する方策を取っており、単独ではレベル4には至らず、最悪でもレベル3以下で収束するように対応がなされていると考えられる。
_しかし、仮にレベル4に至って、事象の拡大・進展を抑制しようとする状況では、非常用機器を確実に使用して事故の収束を目指すことが不可避である。すなわちアクシデントマネジメントを的確に実施することが必須である。レベル4の状況では、システムの冗長性が著しく低下し、通常運転時にはバックアップを期待できる機器・システムの使用が不可能になる場合を想定する必要がある。
_例えば、海水冷却系機器では、海水に起因する腐食の進行を十分に把握し、投入が必要となった時点で機器の負荷が増大した途端に損傷を生ずるというような事態は避ける必要がある。また、圧力バウンダリーにある機器は、機能テストだけでは把握できない構造上の性能の問題を抱えている可能性があり、不断のチェックを欠かすことができない。
従って、所定の時間内に事故を収束させるためには、機器・システムのレジリエンス(復元力)評価を的確に実施しておくことが必須で、機器・システムのマニュアルを完備し、日頃その操作に習熟するための訓練が必要である。それと同時に日頃の保守管理を怠らずに非常用機器の信頼性を十分に担保しておくことが重要である。これは水化学管理の範疇外ではあるが、レベル4対応時の非常用機器の重要性を十分に認識しておく必要がある。
_仮にレベル4の状況に至った際、プラントに水化学の専門家が滞在しているという保証はないので、マニュアルには様々な状況でのチェックポイントが記載されていることが要求される。このようなマニュアル作りには水化学の視点が必要不可欠であり、意識を共有化することが重要である。

5. 水化学ロードマップ2020

_軽水炉の安全性・信頼性にかかわる重要課題の多くは、高温・高放射線環境下で構造材料あるいは燃料と、冷却材・減速材として用いられている水の境界領域で発生している。水化学は、各種構造材料と燃料が水を介して相互に影響を及ぼすプラントシステムを包括的に捉え、多様な課題や目標に対し、調和的な解決あるいは実現を目指す工学分野である。水化学は、これまで構造材料及び燃料健全性の維持・向上、被ばく線源低減、ならびに放射性廃棄物の低減等において重要な役割を果たしてきた。水化学は、接液する全ての構造材料に影響を及ぼすと同時に、その影響も受けるため、構造材料、燃料との三者間でトレードオフが問題となることが多い。諸課題への貢献に際しては、特定の課題にのみ偏ることなく、プラント全体を俯瞰した最適な制御が求められる。

_水化学ロードマップでは、「水化学による原子力発電プラントの安全性及び信頼性維持への貢献」を目標に、以下の達成を目指す。

○ 構造材料の高信頼化
・応力腐食割れ(SCC)の抑制
・配管減肉環境の緩和
・PWR蒸気発生器長期信頼性の確保
・状態基準保全の支援
○ 燃料の高信頼化
・被覆管・部材の腐食/水素吸収の対策
・燃料性能の維持(CIPS対策)
○ 被ばく線源の低減
○ 環境負荷の低減
○ 共通基盤技術の整備
・水化学、腐食に係わる共通基盤技術の整備
・核分裂生成物挙動に関する共通基盤技術の整備
・人・情報の整備
○ 事故時対応の水化学の検討
・事故時に水化学が関与する事象への対策
・事故炉の廃炉推進に向けた水化学による対応

_水化学ロードマップ2020では、水化学ロードマップ2009における「安全基盤研究」と「基盤整備」に加えて、1F事故を教訓とするため、新たに「事故時対応の水化学」と「福島廃炉推進対応の水化学」に係わる課題を抽出し、長期に亘る廃炉作業の安全かつ円滑な遂行に必要な項目を盛り込むことに留意した。加えて、深層防護の基本的な理念を取り入れ、抽出された課題について深層防護との関連性を明確にした。抽出した各々の課題について、最新の技術動向を踏まえて、技術戦略マップ(導入シナリオ、技術マップ、ロードマップ)の見直しあるいは新規作成を行った。
_水化学ロードマップ2020で抽出された個別課題を、図5に示す。次章以降で、各個別課題について詳述するが、本章では要約として、研究方針と課題項目をまとめて示す。

① 構造材料の高信頼化(6.1節)

①-A 応力腐食割れ(SCC)の抑制(6.1.1項)
_SCC環境緩和はプラントの安全性確保・公益性向上に大きく貢献できるポテンシャルを有しているが、その有効性が広く認知されるに至っておらず、プラント維持管理(点検・補修・取替)とのリンクも不十分である。日本機械学会が制定した「発電用原子力設備規格 維持規格」には、環境緩和の効果を取り入れたSCC進展線図が示されているが、実プラントではこれに基づく維持管理の合理化には至っておらず、早期にその実現を図ることが必要である。特に、予防保全としてのSCC環境緩和の効果を考慮した設備の点検・補修・取替の方法を、関連分野との協力の下、ガイドラインとして整備する必要がある。また、今後、新検査制度における保全活動、あるいは、評価指標としての活用の観点からも、SCC環境緩和の検討を深めていく必要がある。そのため、以下に示す技術の開発や高度化、ならびに、検証と標準化が必要と考えられる。
・SCC環境計測手法・評価手法の高度化・検証・標準化
・SCC環境緩和技術の開発・高度化
・SCC発生進展に及ぼす環境因子の影響に関するデータ整備・高精度化
・データや評価技術の検証、規制基準の整備
・SCCメカニズム解明

①-B 配管減肉環境緩和(6.1.2項)
_配管減肉管理は、日本機械学会が制定した「発電用原子力設備規格 加圧水型/沸騰水型原子力発電所 配管減肉管理に関する技術規格」に基づいて実施されており、この技術規格により体系化して整理されたため、それ以前の管理と比べて、飛躍的に安全性が向上した。但し、現在の減肉管理は、肉厚測定結果の実績から、十分に裕度を持って設定された減肉速度に基づいて行われているため、新たな環境緩和技術を適用して減肉が抑制されても、肉厚測定結果が蓄積しないと減肉管理に反映できない体系となっている。今後、安全性の更なる追求と合理性の調和を達成するために、以下の技術開発を進めていく。
・配管減肉防止技術・環境緩和技術の開発・標準化
・配管減肉予測評価手法の構築・標準化
・規格・基準の整備

①-C PWR蒸気発生器長期信頼性確保(1.3項)
_国内PWRでは、蒸気発生器(SG)伝熱管材料として、より耐食性の高いTT600、TT690合金を採用した新型蒸気発生器(SG)に取替えるとともに、種々の水質改善対策が適用された結果、SG二次側の信頼性にかかわる腐食損傷は顕在化していない。しかし、水質の高度化が図られた結果、不純物の持ち込みに対する緩衝作用が小さくなり、クレビス環境が大きく酸あるいはアルカリ側に偏った環境下で腐食電位が上昇した場合は、粒界割れ(IGA)発生感受性を有している。また、二次系系統で材料のFAC等の腐食によって発生した鉄がSGへ持ち込まれ、構造物に付着して、伝熱抵抗、流動抵抗となり機器の性能劣化現象が顕在化するとともに、クレビス部にスケールが蓄積することで損傷発生リスクが増大している。そこで、SGの長期信頼性及びプラント安定運転を確保していくため、以下に示す技術の高度化あるいは新技術の開発に継続的に取り組んでいく。
・メカニズムの解明(SG伝熱管腐食、スケール付着)
・SGクレビスの環境評価、酸性環境緩和、濃縮環境緩和に関する技術開発
・SGへの鉄持込み抑制、スケール付着影響緩和・抑制評価、除去・改質に関する技術開発
・新技術の開発、適用性評価、導入(代替ヒドラジン、スケール分散剤)

①-D 状態基準保全の支援(6.1.4項)

_SCCやFAC等の経年劣化事象について、材料・応力・環境面から多面的に計測・評価可能なモニタリング技術を開発・適用することで、長期にわたる経年劣化の予測評価精度の向上や状態基準保全の充実が期待される。経年劣化予測や状態基準保全は、設備の信頼性向上による事故発生リスクの低減、一次冷却材の異常兆候の早期検出によるプラント運転管理への判断材料の提供につながるため、事故発生防止及び拡大防止に貢献することができる。そこで、状態基準保全への支援として、以下の課題に取り組む。
・環境モニタリング技術の高度化
・実機材劣化評価手法の高度化
・状態基準保全手法の高度化

② 燃料の高信頼化(6.2節)

②-A 被覆管・部材の腐食/水素吸収対策(6.2.1項)
_1F事故を契機に、核燃料分野において、FP放出低減/温度上昇抑制ペレットの開発と通常時材料劣化低減被覆管の開発が加速されるとともに、事故時高温酸化劣化抑制部材や事故耐性燃料の開発が求められるようになった。改良型燃料の導入に際しては、被覆管や部材の材質変更に及ぼす水化学の影響を事前に評価しておく必要がある。また、新たな水化学技術の導入に際しても、現行燃料の被覆管や部材の腐食対策及び水素吸収特性に及ぼす水化学の影響の有無を事前に評価しておく必要がある。しかし、ジルコニウム合金のブレーカウェイ現象の原因や水素吸収機構について、影響因子の定量的影響や重畳効果は判っておらず、理解の統一に至っていない。そこで、以下の課題に取り組んでいく。
・被覆管・部材の腐食/水素吸収メカニズムの解明
・被覆管・部材の腐食/水素吸収対策技術の開発
・データや評価技術の検証
・被覆管・部材の健全性評価に係わる規格基準の策定

②-B 燃料性能維持(CIPS対策)(6.2.2項)
_CIPSは、クラッドが燃料の軸方向に不均一に付着し、ホウ素の不均一析出により、炉心の軸方向の線出力分布(偏差)に異常を生じる事象であり、事象の進行によって、炉心の安全性や燃料の健全性に問題を生じる可能性がある。CIPSの発生は、クラッド付着・剥離と密接に関連しているが、クラッド付着・剥離のメカニズムに化学因子や熱水力因子が複雑に関与すること、さらに、原子沪水中のホウ素取り込み機構の影響も受けることから、全体のメカニズムは明確になっていない。そこで、以下の課題に取り組んでいく。
・CIPS発生メカニズムの解明
・CIPS対策技術の開発
・データや評価技術の検証
・CIPSに係わる規格基準の策定

③ 被ばく線源低減(6.3節)
_我が国の原子力発電プラント1基当たりの年間平均線量(以下、「平均線量」という)は90年代後半以降、諸外国と比較して高く推移しており、この原因は1サイクルあたりの運転期間の違いによる年間作業量の違いによるとの指摘があった。しかしながら、米国やスウェーデンでは近年も着実に減少傾向にあることから、単純に年間作業量の違いのみとは言い切れず、我が国の被ばくの現状を詳細に分析し、さらに被ばく低減を進める必要がある。
_また我が国の原子力発電プラントでは震災後に長期停止を余儀なくされているが、長期停止による線源核種の減衰と作業量の減少に伴い、平均線量は震災以前より大幅に低減しているが、再稼働後の平均線量がどのように推移するか注目されるところである。再稼働後も現状の線量を維持するためには、既存技術の着実な適用のみならず、新規の水化学技術の開発・適用が望まれる。
_冷却材中のクラッド挙動については、従来から、日本も含め各国で検討がなされており、実機クラッド分析、水質調査結果を元に、水化学という視点から被ばく線源強度低減を目的に冷却材への低濃度亜鉛注入等、種々の被ばく低減対策が実施されている。これら水化学改善策の適用効果の評価には、現在、被ばく線源挙動メカニズムに基づくモデルを用いて評価しているが、新規の水化学対策を適用した場合の評価精度が低下する等の問題があり、メカニズム解明についてもさらに検討が必要な状況にある。そこで、以下の課題について、技術開発とメカニズム解明を並行して進めていく。
・既存線源低減技術高度化(高Li運用、濃縮10B運用、除染法、亜鉛注入等)
・革新的線源低減技術開発(被ばく線源生成メカニズム解明に基づく革新的技術の開発)

④ 環境負荷低減(6.4節)
_原子力発電プラントでは、材料・燃料の信頼性・健全性の維持確保や業務従事者の被ばく低減等を目的とした水化学制御を運用していくなかで、副次的に放射性廃棄物(使用済樹脂、フィルタ等)や制御用薬品を含む排水等が発生してくる。今後、長期サイクル運用や出力向上運転等プラント高度化と新たな水化学制御の適用に鑑み、水化学技術改善と両立させた廃棄物/排水処理の最適運用を目指し、環境負荷の少ない発電プラントとして環境への影響を低減することが重要である。そこで、以下の課題について、改善策を立案し、実機適用実績を踏まえたPDCAサイクルを確立する。
・浄化脱塩塔、フィルタの運用最適化(高交換容量、耐酸化性イオン交換樹脂の開発等)
・環境への放出低減(ヒドラジンの使用量低減・代替材適用、二次側化学洗浄廃液の処理)

⑤ 共通基盤技術(7章)

⑤-A 水化学、腐食に係わる共通基盤技術(7.1.1項)
_水化学研究には、構造材料、燃料の健全性及び線源強度低減等様々な目的・対象があるが、個々の研究を進めるうえで、基礎実験での現象把握、モデル化及び実機との比較に共通して必要となる基盤技術として、以下の4項目の課題に取り組む。
・腐食環境評価技術(プラント冷却系全体及び局所的な腐食環境の定量化)
・腐食メカニズム(腐食・溶出・酸化物形成のメカニズム、放射線照射の直接・間接効果)
・酸化物・イオン種の付着脱離メカニズム
・実験技術(実機条件の模擬、複数の腐食挙動影響因子の再現、加速実験法)

⑤-B 核分裂生成物挙動に関する共通基盤技術(7.1.2項)
_事故時対応の水化学では、一次冷却水中の放射性腐食生成物や燃料被覆管によって閉じ込められた放射性核分裂生成物が主であった従来の水化学と異なり、事故時に燃料体から直接放出される放射性核分裂生成物を取扱うため、その化学的挙動が重要となる。放射性核分裂生成物挙動に係わる研究は、燃料損傷とそれに伴う環境への放出に関連して、非常に活発に行われてきたが、燃料破損対策の確立とその有効性の確認、シビアアクシデント研究の収束の2 段階で縮小された。しかし、1F事故に関する調査委員会でも、ソースタームの評価の重要性と放射性核分裂生成物挙動に係わる研究、技術者の育成の重要性が指摘されている。そのため、FP 化学に取り組める体制作りとそれをバックアップできる組織作りを行い、系統的、組織的な対応を目指している。具体的な開発項目は以下の通り。
・事故時のFP 挙動の解明[一般的なFP に係わる基礎事象]
・1F事故時のFP 挙動の実態解明[事故時に見られた事象]
・事故時FP 挙動解析コードの整備と標準化
・アクシデントマネジメントへの対応

⑤-C 人・情報の整備(7.2節)
_今後のプラント運用高度化、燃料高度化及び高経年化対応水化学の適用に際し、事前に事象を予測し対策を立案しておくプロアクティブな水化学技術の展開が必要であり、これまでの蓄積を基礎に、水化学分野の技術情報基盤を整備していくことが重要である。また、プラントの運用管理に、透明性・説明性が要求される環境となってきており、水化学技術を体系化し、規格・基準化、標準化を進める必要がある。一方、新規プラント建設の減少により、水化学の研究開発及び管理を担う人材の供給が減少し、高齢化が進行している。研究の場も狭まっており、研究コミュニティの維持が危ぶまれるほどである。原子力発電の持続的発展を支えるためには、水化学分野における裾野拡大を含む人材の確保は緊急の課題と言える。そこで、以下の4項目の課題に取り組む。
・研究基盤の確保
・技術情報基盤の整備と技術伝承
・水化学関連の規格・基準化、標準化
・国際協力の推進

⑥ 事故時対応の水化学(8章)

⑥-A 事故時に水化学が関与する事象とその対策(8.1節)
_大型の商用原子炉の過去の事故の教訓に則り、TMI-2、チェルノブイリ及び1F事故の知見に基づき、事故時の化学挙動を整理して、対応を明確にする必要がある。水化学が関与する事故時対策として導入されている既存の対策設備は、既に世界の他のプラント等で導入実績のあるもので、現在の事故シナリオとリスク評価の観点から直ちに新たな研究開発が必要となる事項はないと考えられる。しかしながら、シビアアクシデント(SA) 時の事故シナリオや共通基盤技術の進歩に基づき解析モデルや解析コードが高度化されることにより、従来と異なる結果が得られた場合には、既存の対策設備の妥当性を再評価し、必要に応じて対策設備の見直し・高度化を図っていく必要がある。具体的な開発項目は以下の通り。
・水素蓄積防止技術の最適化・高度化
・FP 挙動の解明と解析コードの高度化
・pH 制御技術の開発・高度化
・フィルターベントシステムの開発・高度化
・SA 対策設備の保守・管理方法の確立

⑥-B 事故炉の廃炉推進対応の水化学(8.2節)
_1F事故後の廃炉推進に向けて取り組むべき水化学について、喫緊の課題としては汚染滞留水処理が挙げられる。これまで対処することのなかったFP核種を中心とした水処理施策の確立は新しい課題である。それに伴い、多量の二次廃棄物が発生しており、その処理・処分技術の開発に向けては長期的な取り組みが必要である。さらに、燃料デブリ取り出しの段階になると、燃料デブリ性状に基づいたFP挙動の把握、水処理が必要になると考えられる。
_これらの対応と並行して、高放射能濃度での汚染水、廃棄物中での水の放射線分解による水素発生は、今後のシステム検討の安全評価項目として重要であり、モデル化を含めて取り組むべき課題である。さらには、長期間にわたるシステム健全性の確保に向けた材料腐食対策も取り上げることとする。また、今後の燃料デブリ取出しを始めとする廃炉作業の推進にあたっては、作業従事者の被ばく低減対策の確立が望まれる。具体的な開発項目は、それぞれ以下の通り。
・汚染水処理対策と二次廃棄物処理(放射能除去メディアの開発・モデル化、二次廃棄物処理における水化学のアプローチ)
・燃料デブリ取出し時水処理対策(取出し時の水質環境評価、水処理システムの構築)
・水素発生量評価(ラジオリシスによる水素発生挙動の評価、不純物存在下での評価)
・材料健全性評価(海水注入時の材料健全性評価、長期的な材料健全性評価)
・被ばく低減対策(核種移行挙動解析、実機データによるベンチマーク評価、被ばく線量評価)

4.自主的安全性向上に向けての水化学ロードマップ改訂の基本方針及び実施体制

_日本原子力学会 水化学部会に設置したロードマップフォローアップWG(主査:渡邉豊東北大学教授)において2017年4月から水化学ロードマップ2009のフォローアップを開始した。水化学ロードマップ2009では、発電用軽水炉プラントの安全性維持・向上を主眼としつつも、高経年化対応、燃料高度化、軽水炉高度利用推進の支援に重きを置いた構成となっていた。そこで今回の改訂では、1F事故の教訓を踏まえて、水化学技術の意義を深層防護の視点から改めて見直し、より広い視点で水化学の役割を再定義するとともに、核分裂生成物挙動を含めた事故時対応の水化学を新たに加えることとした。

4.1 水化学ロードマップと深層防護との関連付け

_1F事故を契機に、我が国の原子力発電プラントにおいては、新規制基準への適合性が確認された以降も、自主的・継続的な安全性向上に向けた取り組みを継続することが求められるようになった。すなわち、原子力安全に対する考え方が「シビアアクシデントを発生させない」との従来の視点から、「常に事故のリスクはある」との視点へとシフトし、安全規制とは独立した、万一の事態に備えた原子力災害対策を整備することが必要となった。この不確実性を持った万一の事態に備えるための有効なアプローチとして深層防護の考えがあり、水化学ロードマップにおいてもこの深層防護の考えを取り入れ、自主的安全性向上に向けたロードマップとして改訂を行うこととした。
_この深層防護は「1.はじめに」に記載した通り、IAEAの考えに基づけば5つのレベルに分類されるが、水化学ロードマップ2009では、運転中プラントを対象としたレベル1(異常運転や故障の防止)、レベル2(異常運転の制御及び故障の検知)に該当するものが中心であった。しかしながら、1F事故後の対応を顧みると、汚染水の処理や放射性ヨウ素等の核分裂生成物の放出抑制等、レベル4(事故の進展防止及び影響緩和を含む過酷なプラント状態の制御)に相当する対応に関しても水化学が果たすべき役割が大きいことを改めて認識した。そこで、表4-1-1表4-1-2に示すように、深層防護の各レベルに対する水化学の役割を新たに定義し、各研究課題がどのレベルに貢献するかを整理した上で新たな課題の抽出を行うとともに、従来なかったレベル4に相当する事故時対応の水化学を新たに追加することとした。なお、レベル5(防災)は放射性物質が大規模に放出された場合の影響緩和を目的とした原子力発電プラントの敷地外も含めた緊急時の対応方法を求めるものであり、今回の改訂において水化学で解決すべき課題は見出せなかった。

4.2 改訂の基本方針

_フォローアップは水化学ロードマップ2009で抽出・整理した課題を基本としつつ、4.1で述べた通り、自主的安全性向上を目指した深層防護との関連付けにより、FP挙動の解明、事故時の対応、廃止措置における水化学を新たに追加することとした。
_また、個別ロードマップについては2009年以降の状況変化への対応を基本に、下記の観点から改訂した。
・現状分析の見直し
・実施時期、期間
・関連分野との連携
_また、水化学ロードマップ2009作成後、経済産業省資源エネルギー庁と日本原子力学会が策定した「軽水炉安全技術・人材ロードマップ」との整合・連携を図りながら策定した。

4.3 フォローアップの実施体制

_フォローアップは、渡邉豊部会長を主査として、大学、電力、メーカ、研究機関からの水化学、材料、燃料及び安全に係わる各分野の専門家で構成された「水化学ロードマップフォローアップ検討WG」を日本原子力学会水化学部会内に設置し、検討を進めた。構成委員について表4-2に示す。また、構造材料、燃料健全性及び被ばく線源低減、事故時対応等に係わる個別検討に当たっては、原子力学会 春の年会、秋の大会の企画セッション、水化学部会で実施している定例研究会を通して、幅広い分野の有識者からの意見を取り入れながら改訂を進めた。