7.1.2 核分裂生成物挙動に係わる共通基盤技術

_第6章の各項目と本基盤技術との関連は比較的希薄であるが、深層防護レベル4までの評価を行う上では、核分裂生成物(FP)挙動との関わりが生ずるものと考える。第8章は「事故時対応及び福島第一原子力発電所廃炉対応」に係わるもので、これらはともに、FP挙動とは深く係わる。汚染水の処理処分、建物の汚染とその除染あるは環境汚染の修復についても、線源であるFP挙動とは密接に関わり、それぞれの項目で議論されものと考えるが、縦割りでは、技術的な見落としを生ずる可能性も懸念される。このため、FP挙動の共通事象とその理解、対応のための、基盤技術として、水化学ロードマップ2009に記載された「水化学・腐食に係わる共通基盤技術」に加えて、「核分裂生成物挙動に関する共通基盤技術」をまとめておくことが重要と考える。第6章及び第8章に記載された各技術項目と、本章の「核分裂生成物挙動に関する共通基盤技術」の関連は、第6章の各技術項目と「水化学、腐食に係わる共通基盤技術」との関係と同様である。
_本水化学ロードマップでは、水化学ロードマップ2009をベースに組み立てられており、水化学ロードマップ2009にはなかったFP挙動を全て既確立のロードマップの各項目に加えるのみでは、全体のバランスを損なうことも明らかになった。これは、多くの項目では、深層防護のレベル4対応で初めてFP挙動との係わりが顕在化するためである。また、第8章「事故時対応及び福島第一原子力発電所廃炉対応」では、取り扱う課題の過半がFP挙動に係わるものであり、共通基盤との切り分けが難しい。このため、一部は記載が重複するが、FP挙動全般を本共通基盤技術に取り入れた。

_ここでは、まず核分裂生成物(FP)の種類と主な特性について記載する。
_ウランあるいはプルトニウムの核分裂の結果、ウランあるいはプルトニウムは、2個余の中性子を放出し、2つのFPを生じる。実際には、トリチウムを含む3体に分裂するケース(3体核分裂:確率は、0.9~1.2×10-4/核分裂)もある[7.1.2-1]。この3体核分裂がトリチウムの主要発生源となる。FPは質量数の等しいものに分裂するよりも、図7.1.2-1に示すように質量数の異なる2つのグループの原子核に分かれる[7.1.2-2]。例えば、131I、137Cs等に代表される質量数130付近の比較的重い元素と99Mo、90Sr、95Zr等に代表される質量数90付近の比較的軽い元素の2つのグループが主なものである。

_FPは、ベータ壊変を繰り返し、崩壊熱を放出しながら、長寿命もしくは安定核種を生成する。表7.1.2-1に示すように、個々のFP核種は複雑な壊変スキーム内に含まれる[7.1.2-2]

_崩壊熱は核分裂終了後、ほぼ指数関数的に減少する。崩壊熱の経時変化を、図7.1.2-2に示す。崩壊熱は、燃料の照射時間(運転時間)Ti、核分裂停止後の時間(原子炉停止後の時間)Tcの関数として、近似的に次式で与えられる(Way-Wignerの式)[7.1.2-3]

Pd=0.1Po(Tc-0.2-(Tc+Ti)-0.2)                                             (7.1.2-1)
ここに、             Pd:運転時の熱出力(W)
________Po:崩壊熱(W)
________Tc:停止後の時間(s)
________Ti運転時間(s)

_これらのFPの生成、壊変、減損について計算を行うコードシステムの代表的なものとしてORIGEN2(ORNL Isotope Generation and Depletion)コードがある[7.1.2-4]。生成、壊変の過程を連立一次常微分方程式体系で表し、行列指数法でその数値解を求める。1981年にリリースされ、1991年には高燃焼度のPWRとBWRを対象とするデータライブラリを追加したORIGEN2.1が、その後FP生成量の誤差を小さくしたORIGEN2.2が2002年にリリースされた(原子力百科事典ATOMIC、2015)。近年、MOX燃料の場合には核分裂収率が含まれていない同位体の核分裂率の寄与が増大するというバグがORIGEN2.2に発見され、JAEA須山らにより修正された結果、適切な計算結果が得られるようになった[7.1.2-5]
_表7.1.2-2には、短期・中期・長期的な観点で重要となる主なFPを示す[7.1.2-2]。これらのFPは、燃料中においては以下に示すような物理化学状態で存在しており、事故時における燃料からの放出挙動や化学形に影響を与える。

    • ウランまたはプルトニウム酸化物に固溶:全FPのほぼ半数、Sr、Y、Zr、La、Ce、Nd等
    • 酸化物析出相を形成:ウランまたはプルトニウム酸化物への固溶限度あり、Ba、 Nb等
    • 金属析出相を形成:Tc、 Ru、 Rh、 Pd、 Moの一部
    • 揮発性FP:存在状態が完全には解明されておらず、状態に応じて、酸化物へ固溶、低温領域で凝縮相形成、被覆管とのギャップ部でCsI、Cs2MoO4、Cs2Te、セシウムウラネート等として析出等のように変化する。Br、Rb、Te、I、Cs等
    • FPガス:低固溶率で酸化物相に固溶、粒内または粒界にバブルとして析出、Kr及びXe

_各FPは、事故時ソースターム評価の観点で、揮発性等の特性に応じたカテゴリーに分けられている。代表的なカテゴリー分けとしてNUREG1465 では以下のように区分されている[7.1.2-6]
① 希ガス:Xe、Kr
② ハロゲン:I、Br
③ アルカリ金属:Cs、Rb
④テルル群:Te、Sb、Se
⑤ バリウム、ストロンチウム:Ba、Sr
⑥ 貴金属:Ru、Rh、Pd、Mo、Tc、Co
⑦ 希土類:La、Zr、Nd、Eu、Nb、Pm、Pr、Sm、Y、Cm、Am
⑧セリウム群:Ce、Pu、Np

_Phébus試験等最新の知見が反映され、SARNET等欧州のシビアアクシデント研究ネットワーク活動により、以下のように揮発性に応じたFPのカテゴリー分けがなされている。

    • FPガス及び揮発性FP:FPガス(Kr、Xe)、揮発性FP(I、Cs、Br、Rb、Te、Sb、Ag)
    • 中揮発性FP:Mo、Rh、Ba、Pd、Tc
    • 低揮発性FP:Sr、Y、Nb、Ru、La、Ce、Eu
    • 非揮発性FP:Zr、Nd、Pr
    • アクチノイド:低揮発性と同等の放出率を示すU及びNpと、非揮発性と同等の放出率を示すPu等がある。

_一方で、万が一、事故が発生した場合のプラント内の放射線線量率や環境への影響という観点でFPを見ると、特に重要と考えられるのは次の核種になる。

①ヨウ素(131I):半減期(約8日)的には問題は小さいが、甲状腺ガン発症の要因とされるため。
②セシウム(134Cs、137Cs):半減期(約2年、30年)が長く、揮発性で燃料体から放出されやすく、プラント内外の線量率を決める主因となるため。
③ストロンチウム(90Sr):低揮発性でセシウムに比べて、燃料体から放出される割合は小さいが、半減期(約29年)が長く、β線放出核種として、体内被曝への影響は懸念されるため。
④トリチウム(3H):ウランの3体核分裂反応により生成される。半減期(約12年)が長く、β線放出核種である。特に、水素同位体であるため分離除去が困難である。

_ヨウ素は、化学的な挙動が非常に複雑で、特に放射線照射下では、図7.1.2-3に示すようなラジオリシス生成種との反応 7.1.2-7で、価数を変えやすく、その結果、溶液系からガス系への移行が見られ、環境へ放出される可能性が高い。これまで放射線照射下を含め、ヨウ素化学反応については研究例が多いが、事故時でのヨウ素の挙動を把握するためには、ヨウ素単独ではなく、セシウムその他のFP元素、あるいはラジオリシス生成種との反応を含む化学反応のデータベースの確保が必須となる。

_ヨウ素、セシウム、ストロンチウムが、核種フィルタや吸着剤で液中あるいは気中から除去、回収できるのに対して、トリチウムは水素の同位体としての濃縮法により除去、回収が必要で、工学的な規模での回収が難しい。表7.1.2-3にこれまで試みられてきた主要なトリチウム分離回収法を示す[7.1.2-8]。原理的には分離回収は可能であるが、工学的装置の運用という観点では、きわめて分離回収が難しい。これまでのトリチウムの処理法を見ると、海外の再処理工場でのトリチウムの処理は、重水中のトリチウムの回収の除いては、海水中への希釈放流が主である。

(A)現状分析
_研究開発の必要性は、1F廃炉対応と運転中の発電プラントの深層防護レベル4(シビアアクシデント)対応の2つに分けられる。
(1) 1F廃炉対応
_①事故時のFP挙動の解明
_②1F事故時のFP挙動の実態解明
__汚染水処理
__体内体外被ばく量評価
__除染
__廃棄物の分別保管
(2) 深層防護レベル4(シビアアクシデント)対応
_事故時FP挙動解析コードの整備と標準化
__熱流動過程との一体化
_④アクシデントマネジメントへの反映
__事故進展モード対応のサイト内蓄積量、放出量評価
研究開発の現状は、以下の通りである。
①事故時のFP挙動の解明
_シビアアクシデント時のFP挙動の基礎。実際の燃料体からのFPの放出とその移行についての研究ではPhébus FPプロジェクト実験が知られているが、FPの代表核種であり甲状腺被ばくで知られるヨウ素については、さらに詳細に、照射による影響を含む膨大な研究が行われ、データベースも充実している。一方で、1F事故時に問題となったセシウムについてのデータは必ずしも多くないのが現状である。過去のデータベース及び知見と1F事故の解析評価で指摘された技術的なギャップを埋めるため、新たな研究開発が必要とされている。

②1F事故時のFP挙動の実態解明
_1F事故時のFP挙動をPhébus FPプロジェクト実験と対比させ、従来知見で理解可能なものと、新たなデータの必要なものの対比を続けている。現状では、まだ、1F事故時のFP挙動を十分に把握できていないため、今後継続的に、実機のデータ収集と分析を続け、既存データ及び知見で理解できるものと、新たなデータベースの必要なものに弁別し、実態解明を進めるとともに、新しい研究開発の提案、計画に資する。

③事故時FP挙動解析コードの整備と標準化
_既存のシビアアクシデント解析コードをPhébus FPプロジェクト実験データに基づくベンチマーク評価に用い、今後のシビアアクシデント解析の高度化に資する。また、上記、1F事故とPhébus FPプロジェクト実験データの技術的なギャップを、シビアアクシデント解析コードを活用して埋める。

④アクシデントマネジメントへの対応
_原子力発電所に関する新基準の設定、発行に伴い、発電プラントにおいては、アクシデントマネジメントの作成と履行が求められている。深層防護の思想に則り、従来のレベル3を超えたレベル4対応を、アクシデントマネジメントとして成文化し、通常の安全系機器、システムだけでは押さえきれない事象に対して、適切に対処すべき方法を明確化し、広くプラント内で共有することが必然となる。また、その基となる、レベル4事象発生時のFP挙動に対する基礎的な知識を広く共有することが求められる。知識の共有に置いては、本章7.2節「人と情報の整備」においても記述されているが、その中でもFP挙動に関する情報の共有について言及されている。

_これまで失われていたFP化学をはじめFPに係わる技術、情報を再収集し、技術としてきちんと後進に技術伝承(TT: technical transfer)する組織として、2017年6月に日本原子力学会に「シビアアクシデント時の核分裂生成物挙動」研究専門委員会が設置され、現状の分析、関連データの収集、技術課題の発掘が進められており、共通技術の整備と同時に人と情報の整備への寄与が期待されている。

_図7.1.2-4に、FP挙動関連の研究の必要性、現状分析及び研究方針を示す。

(B)研究方針と実施にあたっての問題点
_1F事故に遭遇して、FPを研究対象とする研究者、FPに携わる技術者が極めて少ないという現実が把握出来た。1990年代後半までは、チェルノブイリ原子力発電所事故を受けて、シビアアクシデントに関する研究が活発で、格納容器内に蓄積する水素を爆鳴気になる前に燃焼させるイグナイターの開発や、ヨウ素を中心とするFP挙動及びその除去関連の研究が積極的に進められた。しかし、2000年代に入ると、急激にSAへの関心が薄れ、関係する研究者、技術者が霧散していった。
_今後二度と同じ轍を踏まないためにも、40余年にわたる1Fの廃炉作業を遠隔、完全に遂行するためにも、FP関連の技術を再整理し、次世代へ的確に技術伝承していく必要がある。

_研究開発の方針として、以下に重点を置いた。

      • 技術、研究の立ち上げは、まず関連技術者の組織化に立脚
      • これまでの知見、データの再整理
      • これまでの知識で、1F事故をどこまで評価できるかを明確化
      • 従来知見の不足を早急に補う
      • 新しい実験の提案。予算、人材確保(本ロードマップ)

_具体的な研究の進め方としては、以下の(a)、(b)の2本柱を念頭に進める必要がある。
(a) 廃炉作業円滑遂行(特に、プラント内外の被ばく抑制と廃棄物適正管理)
_①事故時のFP挙動の解明[一般的なFPに係わる基礎事象]
_②1F事故時のFP挙動の実態解明[事故時に見られた事象]
(b) 原子力発電プラントの安全運転(特に確実なレベル4対応)
_③事故時FP挙動解析コードの整備と標準化
_④アクシデントマネジメントへの対応
具体的には、
(i) FP分布の正確な把握、的確な取出と確実な処理
___可能な限り測定に基づき、測定不可の場合は予測
(ii) 事故時のFP挙動の予測とAMへの適切な反映
___シビアクシデント解析コードに依存

_ロードマップ推進のための研究開発推進体制としては、学会レベルでのFP研究の核を作るため、2017年6月、日本原子力学会「シビアアクシデント時の核分裂挙動」研究専門委員会を設立した。同準備会でまとめたPhébus FPプロジェクト実験のデータを中心に、議論し、1F事故との対比を議論して、必要な技術課題をまとめる。表7.1.2-4に主要課題を示す。

_3つのWGを組織して議論を進めているが、3つのWGの相関を図7.1.2-5に示す。

(C)産官学の役割分担の考え方

_核分裂生成物挙動に関する共通基盤技術の確立のための産官学の役割分担を図7.1.2-6に示す。

① 産業界の役割
a. 実機データの蓄積とニーズの提示
_基礎知見と実機知見の結合。特に学術界を積極的に取り込むためには、関連分野の研究ニーズの明確化とその成果の受け皿を確保することが必須である。現状では、学術界への研究ニーズの提示が研究資金の投入に優先するものと考える。学術界に関連研究拠点を確保することで、新たな研究が芽生え、その中から人材供給の可能性も育ってくる。拠点が拡大しつつある段階で、大きな研究資金を確保するという2ステップの対応が有効と考える。科学研究費補助金等の学(学術界)の分野での競争的研究資金を獲得するためには、特定機関を対象とした研究ニーズの開示では十分効果を発揮することはできない。科学研究費補助金の審査に当たる学識経験者群に研究ニーズを公式に開示することが必須となる。あるいは、不特定の学識経験者が読んで理解できる研究ニーズを明確に準備し、提案側がそのニーズドキュメント(提案書)を利用できるような配慮が必要である。こういったドキュメントの準備も、産業界の役割と考える。研究ニーズドキュメントでは、具体的な研究の必要性に留まらず、研究の難易度、期待されるブレークスルーの大きさ、さらには広く科学技術一般に対して期待される波及効果の記載が必須である。
_一方で、水化学・腐食に係わる共通基盤技術と異なり、FP挙動関連の技術は、ごく一部の通常運転時のFP挙動という例外を除くと、運転中の発電用原子炉では経験されない事象が中心であるため、プラントの運用実績から得られる知見、データは皆無に近い。にもかかわらず、レベル4対応では、FP挙動を想定したマニュアルの作成が必須である。どういうデータが必要か、何が不明確かといった情報を学術界に発信し、事故時の対応シナリオの作成が必要である。
_1F廃炉対応では、プラントの各所にアクセスし、データを収集することが産業界に求められている。こういったデータは、廃炉作業の円滑推進に必須であるとともに、世界的にも貴重なものであり、産官学での情報の共有化と国際的な情報発信が望まれる。また、アクセスの困難な箇所での遠隔計測、遠隔作業に係わる技術、中でも除染と計測技術は共通基盤技術として必須のものである。
b. プラント運用上の固有課題の評価
_複合現象のモデル化が必要である。
c. 既存技術の高度化と適用
_基本的には、産業界が独自に資金を確保して対応すべきと考える。ただし、国・官界のR&Dには積極的に参加することが必須で、この分野では、国・官界からの資金供与が必須となる。
d. 水質管理基準等の整備

② 国・官界の役割
a. 長期的戦略の指導的役割
b. 国際間の技術調整
__海外FP挙動関連の情報の把握と国内基準への反映_
__規制当局が、中心的役割を果たすのが望ましい。
c. 大規模実験の推進(に代わる研究用原子炉の建設)
_2016年に廃炉が決まったJMTRに代わる新しい研究用原子炉の建設、稼動とインパイルループ実験による“FP挙動の研究”には発電プラントの建設、運用、経年化プラントの維持、管理に当たる産業界とのかい離はあってはならないことで、装置の計画、製作の段階より、官界、学術界、産業界が一体感を持って、世界トップのインパイルループ実験の成功に向けてベクトルをそろえて対応することが必須と考える。
d. 国内自主技術の育成
_推進当局が、中心的役割を果たすのが望ましい。
e. 原子力の将来ビジョンの明確化と夢の創生

③ 学術界の役割
a. 基礎データ、新知見の発掘と蓄積
(共通的・普遍的・永続的研究テーマ)
_学術界の性格として、研究を強いて、対応できるものではないと考える。産業界の研究ニーズを理解し、能動的に新たな課題に向うような工夫と仕掛けが必要であり、研究資金の大小よりも、学術界に相応しい規模で、学術界としての活動を妨げることがないような資金提供が本質的と考える。そのためには、研究費の申請と受託が容易となるような、研究環境の構築が重要と考える。
b. FP挙動の科学的裏付け
c. 教育・人材の継続的供給
_学術界の自然な姿として、関連研究が根付くことによって、必然的に関連分野の人材育成が可能となり、その結果として、産業界で希望する分野での人材育成がなされるもと考える。結果を急ぎすぎることは、金の卵を生む鶏を損なうことにつながる。短期的には、産業界の自主努力で必要な人材を育成することが重要と考える。

④ 学協会の役割
a. ロードマップローリング
b. 規格標準類策定
c. 共通基盤技術の研究ニーズの発行
d. 人的交流と育成

⑤ 産官学の連携
a. 全体としてのベクトルそろえ
_国家全体として最大の力を発揮できるようなシナリオを提示し、共通の目標に向かって行くムード作りも重要である。特に、産業界の活力が低下気味であり、学の水化学への寄与が小さい点が問題で、連携を強めることで、問題の本質的解決を急ぐ必要がある。

_導入シナリオを図7.1.2-7に示す。
_技術マップを表7.1.2-5に、またロードマップを図7.1.2-8に示すとともに、具体的項目については、本項の末尾に、課題調査票としてまとめた。

参考文献

[7.1-1] 日本原子力学会水化学部会ロードマップフォローアップ小委員会, “水化学ロードマップ2009” (2009).
[7.1.1-1] 日本原子力学会水化学部会ロードマップフォローアップ小委員会, “水化学ロードマップ2009” (2009).
[7.1.1-2] 水化学部会, “水化学部会の現状と今後の展開―水化学高度化と標準化をめざして”, 日本原子力学会誌「アトモス」, 51, 310-313 (2009).
[7.1.1-3] 日本原子力学会編, ”原子炉水化学ハンドブック”, コロナ社 (2000).
[7.1.1-4] 腐食防食学会, ”高温水中における応力腐食亀裂進展試験方法” (2015).
[7.1.1-5] 腐食防食学会, “高温高純度水環境における単軸引張定荷重負荷(UCL)を用いた金属及び合金の応力腐食割れ試験方法” (2015).
[7.1.2-1] M. J. Fluss, N. D. Dudey and R. L. Malewickhi, “Tritium and Alpha-Particle Yields in Fast and Thermal Neutron Fission of 235U”, Phys. Rev. C, 6, 2252 (1972). http://dx.doi.org/10.1103/PhysRevC.6.2252
[7.1.2-2] 日本原子力学会水化学部会「核分裂生成物挙動」研究専門委員会準備会, ”Phebus FPプロジェクトにおける核分裂生成物挙動のまとめ – 福島プラント廃炉計画及びシビアアクシデンと解析への適用”, 水化学部会報告, #2017-0001 (2017).
[7.1.2-3] K. Way and E. P. Wigner, “The Rate of Decay of Fission Products”, Phy. Rev., 73, 1318 (1948).
[7.1.2-4] A. G. CROFF, “ORIGEN-2: A Revised and Updated Version of Oak Ridge Isotope Generation and Development Code”, ORNL-5621, Oak Ridge National Laboratory (1980).
[7.1.2-5] 須山賢也, “ORIGEN2.2 コードの核分裂収率を取り扱うルーチンの問題”, 核データニュース, No.83, 63-39 (2006).
[7.1.2-6] L. E. Herranz and B. Clément, “In-containment source term: Key insights gained from a comparison between the PHÉBUS-FP programme and the US-NRC NUREG-1465 revised source term”, Progress in Nuclear Energy, Vol. 52 (5), July 2010, pp. 481-486 (2010).
[7.1.2-7] 成富満夫, “原子炉事故時における放射性ヨウ素の物理的、化学的挙動に”, 保険物理, 22, 189-207 (1987).
[7.1.2-8] S. Uchida, M. Naitoh, H. Suzuki, H. Okada, and S. Konishi, “Evaluation of Accumulated Fission Products in the Contaminated Water at the Fukushima Dai-ichi Nuclear Power Plant”, Nucl. Technol., 188(3), 252-265 (2014).

課題調査票

課題名 核分裂生成物挙動に関する共通基盤技術

マイルストーン
及び
目指す姿との関連

短期 I. 燃料取りだし開始
=>核分裂生成物(FP)挙動に関する確実な理解短期 II. デブリ取出し方法確定
=>  FP挙動の確実な理解

短期 V. プラント再稼働
=> アクシマネジメントへの核分裂生成物挙動に関する知見の確実な適用

中期 III. デブリ取出し
=> 核分裂生成物の確実な制御

長期 IV. 廃止措置
=> 核分裂生成物の除去と長期安定化

 概要(内容) (1)    研究基盤の確保/技術伝承
_産官学の研究機関が参加して、水化学共通基盤技術に係わる研究を長期的、計画的に実施できる仕組みを構築。学に研究ニーズを開示すると同時に、競争的研究資金獲得が容易になるよう、研究ニーズを開示。また、共同研究プロジェクトを構築していく環境を整備、実施を通し、技術向上を図ると同時に、学において技術伝承を促進して、長期的な研究基盤を確保。特に、核分裂生成物挙動については、若年層のみでなく中間層への技術伝承が重要。
(2)    技術・情報の整備/新技術への挑戦
_国内外の核分裂生成物挙動に係わる技術・情報を再整理し、ドキュメント化。1F事故の経験と重ね合わせて、技術・情報の整合性、妥当性を評価して、不足な情報を抽出し、計画的に補足するための方策を提示して、実行。
_国際的に核分裂生成物挙動解明のためのプロジェクトを企画し、研究開発を主導。このために、Phébus FPプロジェクトに代わる、新しい研究用原子炉の設置を準備し、新たな国際的な核分裂生成物挙動解明研究拠点を確保。
(3)    学協会規格等の整備
_事故時の発電プラント内外の核分裂生成物の計測において、モニタリングポスト、計測器、その使用法等のレベル差、校正、測定値から核分裂生成物濃度への換算法等、統一すべき課題が散見された。品質保証や社会への説明性に関する要求に対し、体系的・組織的に対応するため、放射線計測を中心に、学協会の場で民間規格化・基準化する。こうした民間規格及びその技術説明書は、これまでに蓄積された知識・経験を次世代に適切に継承し、世界的にも高い水準にある我が国の放射線計測のみでなく、水化学管理技術を維持するための技術継承資料として有用。
_過酷事故の発生及び拡大防止に技術情報に基づいて、関連する防災マニュアル類整備に核分裂生成物挙動の観点からの寄与を強化していく。
(4)    国際協力の推進
_上記(2)記載の国際協力体制を推進する。
_防災マニュアル類整備に核分裂生成物挙動の観点からの寄与を強化していく。
導入シナリオとの関連 (1) 事故時のFP挙動解明を通して、廃炉作業の円滑遂行(特に体内・外被ばくに抑制)、原子力発電プラントの安全運転に資する。
(2) 上記を長期間にわたり維持するため、FP挙動関連の知見、技術を確実に技術伝承する。

課題とする根拠
(問題点の所在)

    • プラントの安全・安定な運転を維持するため、技術基盤整備、規格基準類の整備及び人材育成プログラムが必要。
    • プラントのトラブルや異常事態の早期発見及び拡大防止に寄与する技術基盤整備、規格基準類の整備及び人材育成プログラムが必要
    • 事故発生への備えに寄与する技術基盤整備、規格基準類の整備及び人材育成プログラムが必要
    • 事故拡大防止に寄与するための技術基盤整備、マニュアル類整備及び人材育成プログラムが必要
現状分析 (1)    事故時のFP挙動の解明:TMI-2事故処理収束後の研究活動低下

    •  設備老朽化と研究者離散=>若手研究者のFP 離れが深刻化
    •  大学他教育機関でのFP関連カリキュラム消失

(2)    1F事故時のFP挙動の実態解明

    •  実機での関連データ収集の困難さ

(3)    事故時FP挙動解析コードの整備と標準化: 多分野との連携が不可欠

    • 「シビアアクシデント時の核分裂生成物挙動」研究専門委員会発足

(4)    アクシデントマネジメントへの反映: これからの課題

期待される効果
(成果の反映先)

(a) 廃炉作業円滑遂行(プラント内外の被ばく抑制と廃棄物適正管理):上記(1)及び(2)
(b) 原子力発電プラントの安全運転(確実なレベル4対応):上記(3)及び(4)
(c) 上記を長期にわたって支える人材の確保
実施にあたっての問題点
    • 上記(a) 廃炉作業円滑遂行については、緊急性が課題。研究開発資金は獲得可能。
    • 上記(b) 原子力発電プラントの安全運転については、長期的に重要な課題ではあるが、研究開発資金は獲得が課題
    • 上記(c) 人材の確保については、産官学後協力し、体制強化が不可欠。なお、FP挙動は、水化学分野に限定された技術ではない。熱流動、核燃料、保健物理・環境科学、計算科学、再処理、廃棄物処理、核融合、原子力安全等、原子力学会においても多くの部会のサポートで解明されるもので、学内での緊密な協力体制が求められる。
必要な人材基盤 (1)    人材育成が求められる分野

    • FP挙動に関する広く深い知見を有する人材
    • FP挙動に関する新しい知識を求める研究人材
    • プラント全般に精通している人材
    • 事故時のプラント挙動に精通している人材

(2)    人材基盤に関する現状分析

    • 設備老朽化と研究者離散 => 若手研究者のFP 離れが深刻化
    • 大学他教育機関でのFP関連カリキュラム消失
    • 実機での関連データ収集が困難

(3)    課題

    • 計画的かつ継続的な人材確保方策
    • 若手技術者の積極的な参加を勧め、経験を積むことで幅を広げる
他課題との相関 「水化学ロードマップ」の他課題との対応

    • 安全基盤研究「構造材料の高信頼化」を支える共通基盤技術の位置付けであるが、その中で環境負荷低減(被ばく線源低減及び環境・一般公衆への影響低減)に関しては、深層防護レベル4対応の部分は、本共通基盤技術でカバーする。
    • 事故時対応の水化学については、特に明確な分担は決めず本共通基盤技術と協力して、対応する。
実施時期・期間 短期~長期。ロードマップ記載のステージ毎に実施。
実施機関/資金担当

<考え方>

産官学の役割分担
_産の役割
_・ FP分布の測定と予測
_・ FP除去、固定化技術の確立
___=>廃炉関連技術高度化:計測/処理
_・ AMの確立
___=>最先端のAM:あらゆる可能性包含
_官の役割
_・ 必要な基盤(知識・人材・施設・制度)の整備
___=>国家戦略としての人材育成計画
_・ 研究炉建設とin-pile実験
___=>計画的な大型投資
_・ 産学の安全に係わる研究
_学の役割
_・ 事故時FP挙動の解明
___=>評価手法の標準化
_・ 知の蓄積と展開
_・ 研究を支える人材の育成
___=>基盤研究に係わる人材の育成
_学協会の役割
_・ 規格基準化と高度化に貢献
_・ 知識ベースの普及
___=>FP取扱い方法の標準化産官学の連携
・産官学による協調・共同研究
・廃炉プロジェクトを支える要素技術の高度化
・新しい照射試験設備の推進と高度利用

関連分野との連携
・総合的な廃炉技術
・多角的なAM評価

その他 特になし

 

7.1.1 水化学・腐食に係わる共通基盤技術

_原子炉水化学は、線源強度低減、構成材料及び燃料健全性の維持・向上ならびに放射性廃棄物発生量の低減等において重要な役割を果たしてきた。技術的には、さまざまな材料と水との相互作用の解明とその抑制が基幹をなす。材料と水化学の組み合わせにより、現れる現象は多岐に渡るが、その本質的な点には、共通点も多い。
_水化学の研究における本質的・共通的な課題として、基礎メカニズムの解明、腐食環境の評価及び加速実験を含めた実験方法の確立が不可欠であり、水化学ロードマップ2007及び2009では、各項目に共通かつ基礎的な課題を共通基盤技術として記載した[7.1.1-1]
_上記経緯を踏まえ、本ロードマップにおいても、前章(6章)の各課題項目に関連した共通項を持つ基盤技術的課題を抽出し、水化学・腐食に係わる共通基盤技術として取り上げることとした。水化学・腐食に係わる共通基盤技術の課題抽出に当たり、ロードマップ2007及び2009と同様に、共通基盤の位置づけを以下のように設定し検討した。
(a) 燃料・構造材料・水化学固有の各研究を推進する上での共通の基盤技術(現象の把握及びモデル化には必須技術)である。
(b) 実機での現象の把握及び基礎実験と実機対応との橋渡しに重要な寄与を果たす。
(c) 材料・構造変更等の対応が困難なケースに対し、重要なオプションを与える代替技術評価のための技術基盤となりうる。
(d)シーズオリエンテッドな研究課題である。

_上記の位置づけをもとに、前章で取り上げた各課題を検討した。全ての課題に共通する課題として、まず、水化学環境の把握があげられる。また、SCCや配管減肉、燃料健全性等においては、高温水中での材料の腐食現象の理解が必要との共通的課題があげられる。同様に燃料健全性、被ばく線源低減等においては、酸化物やイオンの付着脱離に関する理解が必要との共通課題があげられる。また、全ての項目に共通として、実機を模擬した最適な実験法が必要なことは明白であり、実験方法の開発、検討が共通的課題としてあげられる。以上のことから、以下に示す4つの具体的項目を技術課題して取り上げることとした。
① 腐食環境評価技術
② 腐食カニズム
③ 酸化物・イオン種の付着・脱離メカニズム
④ 実験技術

_本節で取り上げるこれらの技術課題は、前章で取り上げた各課題共通する基盤技術であり、深層防護との関連は、各課題における深層防護との関連に準ずる。ここでは、水化学・腐食に係わる共通基盤技術にて取り上げる各技術課題と深層防護との関連について簡単に記載する。

①腐食環境評価技術
_腐食環境評価技術に関しては、基本的には、定常運転時を想定した課題を抽出している。ただし、シビアアクシデントの収束時にも、本課題で取得される評価技術に関して、その基礎知見は活用可能である。

②腐食メカニズム
_基本的には、定常運転時を想定した課題を抽出している。シビアアクシデントの収束時にも、本課題で取得される腐食に関する基礎知見は、適用可能な条件、部位の評価に関しては活用可能である。

③酸化物・イオン種の付着・脱離メカニズム
_基本的には、定常運転時を想定した課題を抽出している。シビアアクシデント時の収束時にも、本課題で取得される付着脱離メカニズムに関する基礎知見は、適用可能な条件、部位の評価に関しては活用可能である。セシウム等のFP等、シビアアクシデント時に放出される酸化物・イオンの付着脱離に関しては、8章で別途記載したためここでは取り上げない。

④実験技術
_基本的には、定常運転時を想定した課題を抽出している。シビアアクシデントの収束時にも、本課題で取得される実験技術に関する基礎知見は、活用可能である。

(A) 現状分析
_上述の水化学・腐食に係わる共通基盤技術に関する4つの技術課題は、水化学に限らず、その周辺研究にも係わる基礎的な技術である。これらの課題項目は、水化学分野だけではなく、他分野との連携が必要とされる課題も多く、学(学術界)が中心となり本共通基盤技術関連の研究を立ち上げ、推進することが望ましい。そのためには、水化学、広くは材料を含めた原子力関連の技術の共通基盤技術としての認知を受けることが必須で、さまざまな機会、場を通して研究の必要性、重要性、緊急性を訴え、その成果が広く他分野にも寄与することをアピールすることが不可欠である。

(1) 腐食環境評価技術
_材料の腐食は、材料と水環境の相互作用によるものであり、そのメカニズム解明や解析において、腐食環境を評価することは非常に重要である。原子炉における腐食環境の評価においては、原子炉固有の事象である水の放射線分解に起因する腐食性分解生成種の濃度分布等が議論の中心であるが、pH、Fe2+イオンの飽和溶解度、導電率等の因子との関連、高温水中でその場測定可能な腐食電位のようなマクロ的な因子についても、表面皮膜の影響、放射線照射の直接的影響等議論が必要である。また、燃料・材料関連の実験に関して、溶存酸素濃度、腐食電位の設定において、最新のラジオリシス情報に基づく水化学条件を設定する必要があり、そのための情報を取得、更新する必要がある。さらに、表面の酸化皮膜や付着クラッドの影響は考慮されていないため組み入れる必要がある。また、プラントでの現象を理解する上では、PWR、BWRといった軽水炉プラントに限定するのではなく、火力発電プラントあるいは化学プラントといった関連分野からのアナロジーも重要と考える。このような広い視点からの議論については、現状では十分に行えているとは言いがたく、他分野との交流も含め幅広い面で、最新技術に関する議論への積極的な参加による情報収集が必要である。一方で、各種実験における水化学条件の標準化が必要である。また、実機を模擬した照射実験は限界があり、実機現象と模擬実験・加速実験をつなぐ理論ツールの構築が必要である。
_高温水化学センサーは、腐食環境評価にとって重要な役割を果たす。しかし、高温水中での水化学その場測定センサーによる測定技術に関しては、開発はされるが、実用にまで至っていない。長期使用に関する信頼性が十分ではなく、破損し、ルースパーツとなる懸念が残されているためである。
_さらに、1F事故後には、放射線照射下にあり、かつ海水、淡水等の多量の不純物イオンが含まれる環境が発生しており、腐食環境評価のみならず、安全性の観点から水素発生評価等への水化学の寄与も重要となっている。

(2) 腐食メカニズム
_腐食には、水溶液中の湿食とガス中の乾食がある。さらに、腐食を定量的に理解し評価するためには、電気化学的なアプローチが不可欠である。SCC発生、進展の抑制技術として採用されている、NMCA等の貴金属添加技術のルーツが燃料電池開発等の触媒にあることからもわかるように、電気化学分野における最新知見の活用は水化学分野における新技術開発の一助となる。
_一方で、炉内では、軽水炉の燃料材料、構造材料は直接・間接的な放射線照射による様々な影響を受け、放射線分解生成種によっても腐食環境が影響を受けるとともに、構造材間の微細な隙間構造、表面に付着蓄積したスケール、冷却水の複雑な流動条件によっても、腐食挙動が異なるため、各条件下での腐食現象の特徴を把握する必要がある。さらに、実験的評価においても、腐食試験環境の把握において、試料水の減温過程において、腐食生成種の濃度・化学形態が変化することが多く、腐食環境を正しく把握することが難しく、上記(1)の課題と連携しながら進めることが重要である。また、隙間形状の影響と隙間内で発生している現象の理解が重要課題の1つとなっており、SCC試験におけるすきま付定ひずみ曲げ(Creviced bent beam、CBB)試験等では、強制的に隙間条件を形成して試験を実施しているものの、その理論付けについては実例を見ないのが実情である。
_また、1F事故後には、海水や流入地下水成分、デブリからの溶出成分等、多様な不純物が混在し、かつ放射線照射下という特殊環境に材料がさらされている。このような複雑環境に対応するには、データの蓄積のみならずメカニズム解明が重要となる。このためには、放射線化学と腐食科学分野の研究者の連携が有効であり、従来から両分野間で連携してきた水化学は重要な役割を果たすことが期待される。

(3) 酸化物・イオン種の付着・脱離メカニズム
_酸化物やイオン種の付着脱離メカニズについては、配管内面への放射性核種の蓄積あるいは燃料被覆管表面でのクラッド、イオンの付着挙動の解明研究が行われている。既往研究より、各材料表面で発生している現象の理解は進んできているが、これらの知見に基づく定量評価に必要な解析手法及び長期予測手法の提案と高精度化が課題として残されている。この課題解決に必要な付着メカニズム、及び機械的な脱離あるいは溶解といった脱離のメカニズムについての知見の取得、蓄積が重要である。同時に、付着している酸化物やイオン種の腐食に及ぼす影響を明確することもまた、重要課題の1つである。一方で、付着物と材料の隙間に代表される微小な隙間部については、直接実験的なアプローチは難しいため、理論評価を含めた間接的評価にならざるを得ないが、微小すき間部での腐食現象の解明には不可欠である。
_また、付着・堆積物の評価は核燃料や材料を取り出しての分析に依存するため、プラント運用中の状態の把握が難しい。実機での状態と分析された状態を橋渡しするための、in-situ測定法の確立あるいは現象の理論評価ツールの確立が必要である。

(4) 実験技術
_模擬実験、加速実験によるデータの取得、蓄積を実施するにあたって、調査対象として設定した因子を実験におけるパラメータとして適切に取り扱える手法で実施することが重要である。そのため、最適な加速実験、模擬実験手法の選定は、上記(1)~(3)項目の実施による、メカニズムと知見の把握により初めて可能となる。また、実機での大スケールかつ照射下での現象に関して、小スケールな実験室レベルでの実験的手法で評価するうえで、模擬性、加速性を把握することは不可欠である。また、近年では、我が国だけではなく世界的に実験炉が老朽化し、その数も減少傾向にある。そのため、実験炉のみではなく、照射施設等を用いた模擬実験技術の重要度が増してきている。一方で、実験炉における実証試験は、メカニズム解明等の基礎研究と実機において発生する(または発生が確認されている)事象との相関を検討するうえで重要であることは疑いなく、実炉運転相当の放射線場を再現可能な実験炉の必要性は日本国内のみならず世界的にも高いため、将来的展望として新規実験炉の建設には水化学分野としても期待が大きい[7.1.1-2]

(B) 水化学・腐食に係わる共通基盤技術開発の研究方針と課題
_実験室での腐食、電気化学、コロイド化学、放射線化学等に関する基礎研究から実機実証までをつなげていくことが、水化学の共通基礎基盤の重要な役割である。加えて、分野を超えて、計算、模擬実験から取得される知見、情報を統合する必要がある。この統合プロセスにおいて、模擬実験、照射実験と計算科学をベースに体系化を実施することが望ましい。そのためには、水化学、腐食、燃料分野の計算科学的評価と模擬実験、照射実験のさらなる推進が不可欠である。導入シナリオを図7.1.1-1に、基礎から実機へのつながりの考え方を図7.1.1-2に示す。また、技術マップを表7.1.1-1に、各課題の相関を図 7.1.1-3に示す。
_以下に、各項目の研究方針を示す。

(1) 腐食環境評価技術
_原子炉一次冷却系では、(2)の③に詳述するように、放射線照射が直接的あるいは間接的に腐食環境に影響を与える。この現象のメカニズム解明と照射影響軽減対策立案には、これら影響度を定量化する必要があり、実験室内で再現実験を可能とする技術の確立が急務である。そこで、腐食環境評価技術を水化学の中枢に位置づける。腐食環境の定量化はラジオリシスモデルによる理論的評価と、高温水化学センサーを用いた実験的な評価を両輪として展開する。構造材・燃料被覆材と水化学との相互作用解明の基盤技術として、プラント冷却系全体及び隙間部等の局所的な腐食環境を定量化する。また、原子炉固有の課題である放射線照射の直接及び間接効果の影響評価を重点的に盛り込む。
① ラジオリシス解析による照射効果の定量評価
_高温水のラジオリシスにおいては、G値、2次反応に関して、継続的な研究によるデータの更新がされている。一方で、燃料と材料関連の従来研究では、古いラジオリシスパラメータを用いた解析情報に基づく水化学条件を採用していた。これは既往研究で課題となっている実機と実験室の乖離の要因の1つになっていると考えられる。そこで、ラジオリシス解析に関するG値、2次反応に関するデータをさらに高精度化するととともに、これまで想定していなかった多様な不純物を含む系に関して解析可能となるよう基礎データを拡充する。これにより、実機環境をより正確に模擬した条件でのメカニズム研究が可能になるとともに、実機の水質予測技術の高精度化にも資する。

② 沸騰あるいは過飽和析出によるクラッド付着・蓄積及び析出物からのイオン種溶出による局所水質評価
_実際の材料表面は、表面酸化皮膜に覆われており、さらに流入鉄イオンの再析出等による酸化鉄粒子に覆われている。よって構造材表面では、酸化鉄粒子の生成、剥離、再溶出等が発生しており、これらは環境の影響を強く受ける。さらに、これらの粒子の再溶出により発生したイオンが、材料表面に蓄積し、表面近傍の水質を変化させる。したがって、構造材料や燃料表面での腐食現象を議論するにあたり、表面近傍でのイオン種のふるまいを把握することは重要である。そこで、表面近傍における材料及び付着物からの溶出イオン種の、表面近傍への蓄積、さらにそれによる表面局所水質への影響メカニズムを解明し、解析式を提案する。さらに、イオンの輸送等を考慮したマルチフィジックス解析法を提案する。

③ 隙間部、付着クラッド・酸化皮膜と母材界面等の局所水質評価
_実際の材料表面は、酸化皮膜に覆われており、さらに流入鉄イオンの再析出等による酸化鉄粒子に覆われている。腐食や付着に伴う、材料や燃料の損傷はこの皮膜や付着粒子の下で発生している。さらにその進展は亀裂内のような微小隙間構造を考慮して評価する必要がある。また実機材は放射線環境にさらされているため、局所構造と放射線環境が重畳した局所水質となっている。そこで、放射線を考慮した、隙間部やクラッド・皮膜/母材界面における局所水質評価手法を確立し、解析手法を構築、高度化する。また、ECPにおいては構造材表面の酸化皮膜の影響を考慮したうえで評価する必要があることから、ECPへの表面皮膜の影響メカニズムを解明し、それを取り入れたより高精度化したECP評価手法を提案する。

④ 腐食環境のその場(in-situ)測定法の確立
_IASCC等の高い放射線場で発生する事象を理解するには、照射下試験は有用な手段の一つであるが、試験条件の1つである照射下水質の把握が重要である。各種の高温水化学センサーに関しては、実験室系での採用は増加しつつあるが、実機の採用実績があるものとしては、主としてBWRの水素注入運転時に、適正な水素量を決めるために採用された腐食電位センサーのみである。特に、実験炉によるインパイルループ実験等の放射線直接照射下試験では、腐食環境のその場での把握に腐食電位の測定が不可欠であるが、採用される参照電極は放射線照射の影響を受け、特に高線量の中性子照射下ではセンサー寿命が短いことが課題となっている。そのため、放射線の影響を受け難い参照電極の開発とその実証はインパイルループ実験に先立って実施することが必要である。そこで、放射線照射下にある高温水の腐食環境その場測定手法を確立するための基礎検討を行い、手法を提案する。さらに、高線量の中性子照射下で長時間利用可能な水質センサーを提案する。

(2) 腐食メカニズム
_構造・燃料被覆材料と水化学との相互作用解明の基盤技術として、材料の腐食、溶出、酸化物形成のメカニズムを解明し、定量化する。全面腐食と同時に隙間部、亀裂先端部等の局所腐食についても、現象を明らかにするとともに、原子炉固有の課題である放射線照射の直接及び間接効果を盛り込む。酸化皮膜の形成、性状解析に重点を置き、材料研究分野、燃料研究分野の研究者と連携して推進する。
① 腐食速度の温度、pH、酸化種濃度依存性の定量化
_従来使用されている炉内構造材料や燃料材料の高温水中での腐食速度は、重量測定法により測定されたものである。腐食速度の溶存酸素濃度依存性、pH、温度等の環境条件への依存性は、これまでも幅広く取得されてきており、報告例も多い。一方で、隙間内等に代表される局所水質中での材料の腐食速度に関しては、データが不十分であると考えられ、局所水質評価と連携した局所腐食速度の取得等により知見を拡充する。また、局部腐食の発生・進展停止条件の評価も重要であり、データの取得、拡充を行う。さらに、放射線照射下での腐食速度に関しては、データが少なく、今後充実させる。

② 酸化皮膜形成メカニズムと酸化皮膜の腐食への影響の定量化
_高温水中では、材料表面に、緻密な内層とポーラスな外層の2層構造を持つ酸化皮膜が形成される[7.1.1-3]。この酸化皮膜が表面を覆うことで材料表面が保護され、腐食を抑制する。腐食の長期予測のため、この酸化皮膜の影響を定量化したうえで、メカニズムを定式化した腐食解析手法を確立する。また、酸化皮膜の腐食抑制に及ぼす放射線照射影響を明確にする。

③ 放射線照射の腐食及ぼす直接・間接効果の定量化
_放射線照射下では水の放射線分解により、過酸化水素が発生する[7.1.1-3]。よって腐食への照射影響は、照射の直接影響下で発生する腐食と、照射により発生した過酸化水素による間接影響下での腐食に分けて考える必要がある。間接効果に関して、過酸化水素は材料の腐食及びECPへ影響することは以前より指摘されており、過酸化水素の腐食影響に関する研究も進められ、影響メカニズム、溶存酸素との差異においては理解が進んでいる。一方で、直接効果に関しては、材料表面近傍での過酸化水素の湧き出し影響、短寿命ラジカルの寄与、表面保護皮膜への影響等の課題が考えられ、これらのメカニズム解明と定量化を行う。

④ 高温水中あるいは放射線照射下での腐食現象の電気化学的理解
_腐食反応は材料と水化学環境の界面における電気化学反応であり、その理解がメカニズム解明において不可欠である。これまで、高温水中で利用可能な参照電極の開発に加え、電位測定技術、分極測定技術等を用いた腐食メカニズム解明研究が進められている。このメカニズム解明をさらに進めるとともに、高温水中での局部腐食に関する電気化学反応を解明し、さらに放射線の電気化学反応に及ぼす影響も明確にする。

⑤ かい離水素の拡散・水素化物形成
_PWSCCにおいては、水素が重要な環境要素の1つとして議論されている[7.1.1-3]。また、燃料に使用されている材料の健全性の議論においても、水素の影響は重要な要素の1つとされている。特にかい離水素の材料への取り込みと、材料内での水素化物生成のメカニズムを解明する。水素の材料への侵入や、水素化物形成は、軽水炉分野だけではなくさまざまな産業分野で取り組まれている重要課題の1つであり、他分野と連携しながらメカニズム解明と定量化を進める。また、これらの現象への放射線照射影響も理解する。

⑥ 腐食現象のその場(in-situ)測定法の確立
_炉内で発生する腐食現象の解明において、放射線照射下にある高温水中での腐食現象に係わるパラメータのその場測定は非常に有用であり、その手法を確立する。

(3) 酸化物・イオン種の付着・脱離メカニズム
_構造・燃料被覆管材料と水化学との相互作用解明の基盤技術として、燃料・構造材表面での酸化物の析出・付着・脱離・溶解挙動を解明し、あわせて、析出の腐食挙動への影響を定量化する。
① 沸騰析出あるいは過飽和による濃縮析出
_燃料や材料表面への酸化物クラッドの付着量の長期予測において、沸騰析出や過飽和析出による酸化物粒子の表面への析出量の定量化及びそれに基づく解析式の構築を行う。ホウ素の析出等を議論するにあたり、沸騰析出のメカニズム解明と定量化を行う。

② 高流速部への析出と低流速部への沈積
_酸化物粒子の配管への付着を定量化し、高流速部への析出メカニズム、及び低流速部への沈積メカニズムを解明する。さらに流況と付着、沈澱現象のマルチフィジックス解析手法の確立とそれによる定量的評価手法を確立する。

③ 付着物の固着機構
_付着した酸化物粒子の固着機構の解明は表面のクラッド付着を議論するうえで必要不可欠な情報である。そのため、コロイド化学の知見に基づく議論がされており、一定の理解が得られている。一方、高温水中でのコロイド化学に基づくパラメータの直接測定は報告例が少なく、議論をより深めることで、固着機構の解析的予測手法を確立する。

④ 酸化物とイオンの相互作用
_酸化物粒子とイオンの共存条件下において、イオン種によっては酸化物粒子表面に共存イオンが吸着し、酸化物粒子の挙動を変化させる。そのため、高温水中での酸化物粒子とイオンの相互作用を解明し、高温水中での酸化物粒子のコロイド粒子的挙動に対し共存イオンの影響を考慮した評価手法を確立する。

⑤ 機械的はく離
_流況下等にある材料表面では、付着した酸化物粒子の機械的はく離が発生している。よって、配管等への酸化物の付着量、付着速度の予測に当たり、この機械的はく離を考慮する必要がある。そこで、流れによるせん断力、キャビテーション等の機械的はく離の発生要因を考慮した定量的評価を実施し、表面酸化物付着モデルへと導入する。

⑥ 局所 pH 変化
_酸化物やイオン種の付着挙動においてpHは重要な要因の1つである。とくに表面近傍の局所的なpH変化は影響が大きいため、その影響を定量化する。

(4) 実験技術
_構造材料及び燃料被覆管材料と水化学との相互作用解明の基盤技術として、実機条件を模擬できる実験技術を確立する。腐食挙動に影響する主要因子単独あるいは組合せ効果を適切に再現する実験法、及び加速実験法を確立する。さらに、上記(1)~(3)の成果に基づき、現象再現のための模擬及び加速実験技術確立に資する。
① 照射環境模擬実験法(H2O2浸漬実験)等実験環境標準化
_実機で発生する現象の多くは放射線照射下で起こるが、照射下試験は困難が伴うため、メカニズム研究やデータの充実化においては、照射環境を模擬した実験的手法によるアプローチが必要不可欠である。照射下では水の放射線分解により過酸化水素が発生し、高いECP条件になっている。そのため、照射環境模擬として、溶存酸素濃度を非常に高い条件にし、材料のECPを高く保つ条件で試験を実施することで照射環境を模擬している。一方で過酸化水素を用いた実験例もある。照射環境模擬実験法を標準化することで、照射環境模擬実験のデータにおける、手法、条件に起因するデータのばらつきを抑え、より効果的なメカニズム研究を推進可能となる。そこで、炉内環境を模擬した模擬実験技術に関して、提案し、標準化のための検討を行う。

② SCC 試験法
_SCC試験においては、低歪速度引張試験(SSRT)、CT試験片を用いた亀裂進展試験、意図的に隙間を付与した隙間付定ひずみ曲げ(CBB)試験、単軸定荷重引張試験(UCL)等様々な試験によるアプローチが試みられてきた。これらの試験は、手法の開発、データ取得、メカニズム解明研究が同時に進行する状況であったため、報告間のデータのばらつきが大きく、試験法の標準化が必要な状況であった。このうち、亀裂進展試験及びUCL試験に関しては、腐食防食学会により学会標準(「高温水中における応力腐食亀裂進展試験方法」、「高温高純度水環境におけるUCLを用いた金属及び合金の応力腐食割れ試験方法」)が発行され、比較的統一した試験が可能な状況となっている[7.1.1-45] 。一方で、SCCメカニズム解明においては、応力、材料、環境それぞれの要因の影響を把握するために、各要因の影響に着目した、従来の試験法にとらわれない新しい試験法が必要であり、このような新しい試験法の開発を推進する。

③ 加速試験法
_実機での事象、特に高経年化に係わる事象は、大変長い時間経過とともに進行する現象である。一方実験室内では、実機と同一の時間軸での実験は不可能であるため、加速試験による評価は不可欠である。加速試験法の選定、実験条件の設定を間違えると、実機の現象を正しく再現できないことから、採用した試験法の妥当性評価は大変重要である。そこで、各種現象に関する加速試験法の開発、最適化、高度化を実施するとともにその妥当性評価を行う。

④ 模擬実験と実機挙動の橋渡し
_実験室での模擬実験と実機挙動との間に乖離があることは長年指摘され、解決すべき問題の1つである。この乖離を解消するために、実験炉等より実機に近い条件での基礎試験を行い、模擬実験で得られる知見と実機挙動との差異を検討する。

⑤ 腐食環境のその場(in-situ)測定法の確立
_放射線照射下にある高温水の水化学パラメータのその場測定は、各種基礎研究及び実機の水質管理のどちらにおいても大変有効である。そこで、炉内を模擬した強放射線場で長時間利用可能な腐食環境その場測定法を確立する。

_水化学・腐食に係わる共通基盤技術開発に係わるロードマップを図7.1.1-4に示す。

(C) 産官学の役割分担の考え方
_水化学・腐食に係わる共通基盤技術開発における産官学の役割分担を以下にまとめる。
(1) 産業界の役割

    • 実機データの蓄積とニーズの提示
    • プラント運用上の固有課題の評価
    • 既存技術の高度化
    • 水質管理基準等の整備

(2) 国・官界の役割

    • 長期的戦略の指導的役割
    • 国際間の技術調整 海外水化学管理情報の把握と国内基準への反映
    • ホット施設、照射施設、実験炉を用いた大規模実験の推進
    • 国内自主技術の育成
    • 原子力の将来ビジョンの明確化と夢の創生

(3) 学術界の役割

    • 基礎データ、新知見の発掘と蓄積(共通的・普遍的・永続的研究テーマ)
    • 材料・水相互作用の科学的裏付け
    • 教育・人材の継続的供給
    • 体系化、数式化における指導的役割

(4) 学協会の役割

    • ロードマップローリング
    • 規格標準類策定
    • 共通基盤技術の研究ニーズの発行
    • 人的交流と育成

(5) 産官学の連携

    • 国家全体として力を発揮できるようなシナリオの提示
    • 共通の目標に向かって行く体制の構築
    • 学の水化学への寄与の拡充のための連携

課題調査票

課題名 水化学・腐食に係わる共通基盤技術

マイルストーン
及び
目指す姿との関連

短I. 事故発生リスク低減・更なる安全性向上の実施
_IV.信頼性向上へ向けたプラント技術・運用管理の高度化
_V. 保全・運転の負荷軽減・品質向上
⇒水化学・腐食に係わる各課題に関して、その解決と対応のためには基盤技術を確立させる必要がある中II.既設プラントの高稼働運転と長期安定運転の実現
⇒実験技術等の共通基盤技術の確立により各中期課題の解決に資する長I. プラント全体のリスク極小化
⇒実験技術等の共通基盤技術の確立によりプラントの安全性向上に資する
概要(内容) _構造・燃料被覆材料と水化学との相互作用解明に必要とされる基盤技術を確立する。
1.腐食環境評価技術
_構造材・燃料被覆材と水化学との相互作用解明の祈願技術として、プラント冷却系全体及び隙間部等の局所的な腐食環境を定量化する。さらに原子炉固有の課題である放射線照射の直接及び間接効果を重点的に盛り込む。
2.腐食メカニズム
_構造・燃料被覆材料と水化学との相互作用解明の基盤技術として、材料の腐食、溶出、酸化物形成のメカニズムを解明し、定量化をはかる。全面腐食と同時に隙間部、亀裂先端部等の局所腐食についても、現象を明らかにするとともに、原子炉固有の課題である放射線照射の直接及び間接効果を盛り込む。
3.酸化物・イオン種の付着・脱離メカニズム
_構造・燃料被覆材料と水化学との相互作用解明の基盤技術として、燃料・構造材表面への酸化 物の析出・付着・脱離・溶解挙動を解明し、あわせて析出の腐食挙動への影響を定量化する。
4.実験技術
_構造・燃料被覆材料と水化学との相互作用解明の基盤技術として、実機条件を模擬する実験技術を確立する。腐食挙動に影響する主要因子単独あるいは組合せ効果を、適切に再現する 実験法を明確にするとともに、加速実験法を明らかにする。
導入シナリオとの関連
    • 燃料・構造材料・水化学共通の基盤技術(現象のモデル化には必須技術)
    • 実機での現象の把握及び基礎実験と実機対応との橋渡しに寄与
    • 材料・構造変更等の対応が困難なケースに対しての重要なオプション技術

課題とする根拠
(問題点の所在)

_軽水炉の燃料材料、構造材料は直接・間接的な放射線照射による様々な腐食性生成種によって腐食環境が影響を受ける。また、構造材間の微細な隙間構造、表面に付着蓄積したスケール、冷却水の複雑な流動条件によっても、腐食環境が異なる。 一方で、腐食環境を把握するため、試料水の減温過程において、腐食性生成種の濃度・形態が変化することが多く、腐食環境を正しく計測・把握することが難しい。
_燃料被覆材、燃料材料の表面あるいは隙間構造に蓄積・堆積したクラッド、あるいは酸化皮膜が、腐食を抑制あるいは加速。付着・堆積物の評価は燃料・材料を取り出しての分析に依存するため、プラント運用中の状態の把握が難しい。実機での状態と分析された状態の橋渡しをするための、in-situ測定法の確立あるいは現象の理論評価ツールの確立が急務である。
_燃料・材料関連の実験では、古い情報に基づく水化学条件を採用。照射の直接的・間接的影響を配慮すると、原子炉条件では変更が必要である。実機を模擬した照射実験の制約があることから、模擬実験・加速実験が有効である。
現状分析 (1) 腐食環境評価技術

    • 腐食環境に及ぼす照射効果はラジオリシス理論評価手法で定量化可能
    • 隙間部、付着スケール下での腐食環境評価には新しいアプローチ要
    • 腐食環境を直接把握可能な高温水化学センサーの開発が不十分

(2) 腐食メカニズム

    • 腐食に及ぼす照射効果は、ラジオリシスによる腐食環境の変化を通しての間接効果と酸化皮膜への照射効果等直接効果が重畳
    • 隙間部、付着スケール下での局所腐食挙動評価への電気化学的手法適用性は検討要
    • 腐食挙動への酸化皮膜の影響は、皮膜物性に支配される

(3) 酸化物・イオン種の付着・脱離メカニズム

    • 燃料表面での沸騰析出に関しては、半理論モデルが提案されているが、付着力については、決定的な要因は未解明。サブクール沸騰下の付着については十分な理論武装未確立
    • 隙間部への濃縮現象、サブクール沸騰下の付着現象模擬実験。データ数が限られており、更なる研究要
    • 理論評価のためのデータベース強化要

(4) 実験技術

    • 腐食関連事象の水化学指標としてのECPの限界
    • 基礎的な現象把握・定量化のための実験と実機調査の位置づけ明確化要
    • 水化学側からの理論的なアプローチが不足
    • 基礎実験におけるin-situ計測(高温センサ)技術の確立要

期待される効果
(成果の反映先)

_精度の高い実験のためのインフラ整備と体系化により、研究の効率の向上が期待される。
_材料挙動、燃料表面の現象に対する理解が深まり、対策立案に資することができる
実施にあたっての問題点
    • 燃料、材料研究と協力・協調
    • 新しいアイディアに富んだ実験技術の開拓
    • 現象を支配するキーパラメータの摘出と確認
必要な人材基盤 腐食科学、コロイド化学、放射線化学等に関し、実験技術開発、評価等が実施可能な人材

他課題との相関

水化学:腐食生成物の発生、放射化、蓄積の各プロセス現象の定量化
燃料:照射下の被覆材の腐食現象の定量化
構造材:照射の直接・間接効果を含む構造材の腐食現象及びSCCの定量化水化学・腐食に係わる共通基盤技術に関しての他RM等との相関は、6章及び7章にある各個別課題に準ずる。

実施時期・期間

着手は短期。継続して充実化

 

7. 共通基盤技術

7.1水化学共通基盤技術

_水化学ロードマップ2020のとりまとめに当たっては、1F事故の教訓から、これまで記載の無かった核分裂生成物挙動についての記載が必須との合意が水化学ロードマップフォローアップ検討WG内で得られた。核分裂生成物の生成、蓄積、事故時を中心とした燃料からの放出、移行挙動に関する基礎事象を体系化し、これまで体系的な研究がなされてきた放射性ヨウ素に加えて、比較的データの少ない放射性セシウム、ストロンチウム等の挙動に関するデータを整備することが強く望まれている。
_水化学ロードマップ2009では、水化学の共通基盤技術として、燃料及び構造材料の腐食あるいは付着物析出に起因する諸事象の本質を理解し、燃料及び構造材料の健全性を確保し、同時に、線量率の低減・廃棄物発生量の抑制を図るための水と燃料及び構造材料の相互作用の基礎メカニズムの解明と、プラント全体の腐食環境の把握に不可欠な「水化学、腐食に係わる共通基盤技術(水化学ロードマップ2009 [7.1-1] における共通基盤技術)」を取り上げてきたが、水化学ロードマップ2020では、さらに核分裂生成物挙動に関する共通基盤技術を加えることとなった。
_今回の水化学ロードマップのローリングの主眼は、1F事故を受けて、深層防護レベルに対応した水化学の研究開発の位置づけを明確にして、ロードマップを見直した(表4-1-2)。

6.4 環境負荷低減

_原子力の平和利用が始まって半世紀が過ぎ、現在原子力はエネルギー利用と放射線利用により、様々な分野で有効に活用されている。エネルギー利用としての原子力発電は、その他の化石燃料を使用する発電と比較して温室効果ガスである二酸化炭素をほとんど放出しないエネルギー源であり、地球環境への負荷軽減に大きく貢献できる可能性がある。しかし、原子力発電は放射性廃棄物が副次的に発生することが広く認知されており、その発生量の低減が原子力安心を獲得するために必要である。
_このような背景のもと原子力発電プラントでは、安全・安定運転に資するため、これまで水化学側面からの系統構成材料、ならびに燃料に対する信頼性・健全性の維持確保や公衆、ならびに運転業務従事者の被ばく低減等を目的とした技術開発が進められており、現時点での最適な水化学制御が適用されている。それら水化学制御を運用していくなかで、副次的に放射性廃棄物(使用済樹脂、フィルタ等)や制御用薬品を含む排水等が発生してくる。現状、既存技術を用いて適切な処置・処理を実施しているが、長期サイクル運用や出力向上運転等プラント高度化と新たな水化学制御の適用に鑑み、水化学技術改善と両立させた廃棄物/排水処理の最適運用を目指し、環境負荷の少ない発電プラントとして環境への影響を低減すること(例えば、バックエンドへのリスク軽減や平準化、地域共生・共存、作業被ばく線量低減等)が重要である。
_この環境への影響低減に関する現状、研究方針と課題、及び、産官学の役割分担について以下に述べる。

(A) 現状分析
(1) 廃棄物発生抑制(PWR、BWR)
_一次系においては、材料健全性維持、被ばく低減や環境放出低減のため、イオン交換樹脂やフィルタを使用して一次冷却材中の放射性腐食生成物や核分裂生成物を除去している。イオン交換樹脂は除染係数(DF)の低下、酸化劣化等により新樹脂に取替えられ放射性廃棄物となる。また、フィルタは経年劣化に加え、放射性腐食生成物等により発生する差圧等により取替えられて放射性廃棄物となる。これらの取替えはプラントの運転管理の一環で各原子力発電事業者の経験により運用されている。
_イオン交換樹脂やフィルタの浄化性能維持と廃棄物発生量低減とはトレードオフの関係がある。例えばイオン交換樹脂の使用期間延長は粒子状成分に対するDF低下とともに樹脂劣化に伴い発生するTOC等の放出による影響もある。また、フィルタの細メッシュ化は微小粒子に対しても除去可能となるが、差圧上昇等の取替本数増大を招くことになる。
_イオン交換樹脂は過酸化水素を含む水の通水等により酸化し、TOCの放出量が多くなる。そのため、イオン交換容量に余裕があっても取替える場合があり、脱塩塔の使用期間を短くしている。大気開放され放射線が存在する使用済み燃料ピット(SFP)水の浄化系で特に顕著である。
_また、放射性廃棄物中に存在する14Cは、半減期が5730年と埋設後も長期にわたり放射線を放出するため、環境への影響が大きい核種である。原子力発電所における14Cの生成源としては、冷却材(水)や燃料ペレット中の酸素(UO2として)の17O(n、α)14C反応によるもの、構造材料や燃料ペレット中に不純物として含まれる炭素の 13C(n、γ)14C反応によるもの、及び燃料の製造過程において不純物として混入する窒素の14N(n、p)14C反応によるものがある。このうち、燃料内部で発生する14Cは燃料被覆管の破損が発生していない通常運転プラントにおいては問題とならず、また、構造材料の不純物成分の放射化により発生する14Cも微量であり、軽水炉における14Cの主な生成源は、原子炉水自身が持つ酸素であると言われている [6.4-1]。この原子炉水中の酸素の放射化によって発生した14Cは原子沪水中で反応により化学種を生成し、構造材表面に付着する。
_まず、インベントリ低減の観点からは、軽水炉である以上は原子炉水からの14Cの生成を抑制することは困難である。しかしながら、添加薬品やガス、イオン交換樹脂に含まれる窒素は中性子吸収断面積が大きく、14N(n、p)14C反応による生成も無視できない可能性があり、この場合は水化学の改善により低減できる可能性がある。また、構造材料の放射化によって生成する14Cは材料の腐食に伴って炉水中に溶出する可能性があるため、材料の腐食抑制が放射性廃棄物中の14Cの低減に繋がる可能性がある。
_次に、廃棄物発生量低減の観点からは、放射化により生成した14Cの放射性廃棄物中への移行・付着を抑制することが必要である。すなわち、14Cのインベントリ低減に加え、放射性廃棄物へ移行する経路を断つ、または放射性廃棄物から除去することが出来れば、環境への影響を軽減することができる。しかしながら、炉内で生成した14Cが放射性廃棄物へ移行する経路及びそのメカニズムが明確となっていないことから、現段階においては移行経路を遮断するための有効な手段は見出されていない。従って、冷却材中での14Cの挙動解明、すなわち、14Cの発生から廃棄物への取り込みに至る過程での化学形態を含めた挙動解明が重要な課題となる。

(2) 環境への放出低減(PWR)
_PWR二次系においては、設備・機器の腐食防食等の観点から、制御用薬品としてアミン(アンモニアやエタノールアミン)、脱酸素剤としてヒドラジンといった窒素含有の化学薬品を使用している。また、蒸気発生器伝熱管等へ付着したスケールを改質/除去する技術として、キレート剤(例としてEDTA:エチレンジアミン四酢酸)等を用いた化学洗浄の適用が考えられる。このようなプラント保全活動の中で発生する化学薬品等を含む排水は、既存の技術により適切に無害化処理等を行い、問題ないことを確認したのちに放出している。

(B) 研究方針と実施にあたっての問題点
_放射性廃棄物を低減させる手法としては、廃棄物の濃縮や高効率化による減容対策も挙げられるが、浄化系統運用の合理化・最適化や新技術の導入(樹脂やフィルタ開発等)による発生量抑制も有効な手法であることから、水化学的側面からの廃棄物発生低減方策を検討する必要がある。
_水質汚濁に関する環境基準は、化学的酸素要求量(COD)の他に指定海域について全窒素の規定がある。アミンの一部はCOD管理対象薬剤となり、また、全てアミン基を有していることから窒素管理対象薬剤となる。このため、これら薬剤の使用量低減手法並びに脱窒手法の高度化について検討していく必要がある。また、ヒドラジンについてはがん原性が認められ、使用量を低減し環境への放出を低減するか、ヒドラジン代替剤が求められている。制御薬品の選択や処理技術の開発においては、廃棄物発生抑制や環境負荷低減を効率的かつ効果的に達成するため、プラント高度化や新たな水化学管理の影響も同時並行で評価し、改善策を立案する。さらに、実機適用実績を踏まえたPDCAサイクルを確立する。

(1) 一次系浄化脱塩塔、フィルタの運用の最適化(PWR、BWR)
_イオン交換樹脂、フィルタについては、廃棄物発生量軽減を図るため、高交換容量イオン交換樹脂及び耐酸化性イオン交換樹脂の開発とその適用、脱塩塔樹脂運用及びフィルタ形状選定の更なる最適化検討を行う。これにより、現在の年間廃棄物発生量に比べて1割低減を目標とし、原子力安心の獲得と廃棄物処理費用の低減による発電コストの低減を目指す。また、プラントの安定・安全運転のために原子力発電所における廃棄物管理のあるべき姿として、廃棄物量の増加によるプラント運転に支障を来たさない状態を維持するためにも1割低減が必要。

(2) 環境への放出低減(PWR)
_アミンを含む廃液については、実機適用可能な全窒素の低減手法、処理手法の高度化について技術的な検討を行う。ヒドラジン使用量については、SG伝熱管の電位に影響のないレベルまで低減可能な濃度を評価し、実機試験を行う。ヒドラジン代替剤については、国内プラントへの適用に向け、低温での脱酸素性、還元性、ならびに、定常運転時の高温環境での構成材料への適合性評価を行うことが重要である。
_蒸気発生器二次側化学洗浄廃液については、実機適用可能な効率的且つ合理的な廃液処理手法の確立について技術的な検討を行う。

(3) 14Cの生成・移行抑制(PWR、BWR)
_前述の通り、14Cによる環境への影響を軽減するためには、炉内で生成する14Cのインベントリ低減に加え、放射性廃棄物への移行経路の遮断及び放射性廃棄物からの除去が有効であるが、その技術開発のためには先ず14C発生源の特定と発生量に及ぼす各々の寄与割合の推定に加え、放射性廃棄物中への14Cの移行メカニズムを解明する必要がある。
_14C発生源の特定と寄与割合の推定に対しては、冷却材、材料からのものに加え、添加薬品やガス、イオン交換樹脂に含まれる窒素から生じる14C量を推定し、各々から生じる14C量を比較し水化学面からの低減策を検討する。
_放射性廃棄物中への14Cの移行メカニズムの解明に対しては、炉水中(BWRでは主蒸気、復水も含む)、液体、固体、気体廃棄物中における炭素の化学形態を詳細に調査し、それに基づき移行メカニズムを推定し、放射性廃棄物への移行経路の遮断及び放射性廃棄物からの除去法について検討する。

(C) 産官学の役割分担の考え方
① 産業界の役割

    • 一次系浄化脱塩塔、フィルタの運用の更なる最適化
    • 高交換容量イオン交換樹脂及び耐酸化性イオン交換樹脂の開発と適用性評価
    • ヒドラジン使用量低減のためのラボ試験と実機適用性評価
    • ヒドラジン代替剤の定常運転環境におけるラボ試験と実機適用性評価
    • 効率的且つ合理的な洗浄廃液処理手法の高度化
    • 廃棄物中の14C低減
    • 新技術の開発促進
    • 環境リスク低減
    • 地域との共生・共益
    • 積極的な情報公開・情報提供

②国・官界の役割

    • 基盤整備
      _-環境負荷の低い原子力発電に対する国民理解促進
      _-原子力への投資の確保(インセンティブの付与等)
    • 環境リスク低減のための制度構築・運用
    • 海外規制動向等の把握と国内への反映

③学術会の役割

    • 化学物質等の科学的リスクの基礎データ、新知見の蓄積
    • エネルギー・原子力教育の充実と強化
    • 研究の活性化と充実
    • 人材の育成及び供給

④ 学協会の役割

    • ロードマップ策定・維持
    • 人的交流と育成

⑤ 産官学の連携

    • 資金の効率的且つ効果的な運用と成果の共有
    • 実用化までの期間短縮、開発資金の重複の削減
    • 成果の透明性と客観性、規制への迅速な対応
    • 人的交流と育成

_図6.4-1に環境負荷低減に係わる導入シナリオ、表6.4-1に技術マップ、図6.4-2にロードマップを示す。

参考文献

[6.4-1] 日本原子力学会標準, “放射性廃棄物の放射能濃度決定方法-原子力発電所から発生する低レベル放射性廃棄物の放射能濃度決定方法に関する基本手順:2007-浅地中ピット処分廃棄物について-”, 日本原子力学会 (2008).

課題調査票

課題名 環境負荷低減

マイルストーン
及び
目指す姿との関連

・廃棄物量軽減に向けた技術の整備
→ 廃棄物量軽減により、発電所での保管量縮小による安全性、信頼性向上を図るとともに、環境への漏えいリスク低減を図る必要がある。・環境影響低減に向けた技術の整備
→ 水処理薬剤変更や運用方法の最適化により、環境への放出量を低減し、環境の安全性に貢献する必要がある。
概要(内容) ①  PWR一次系浄化脱塩塔、フィルタの運用の最適化
_イオン交換樹脂、フィルタについては、廃棄物発生量軽減を図るため、高交換容量イオン交換樹脂の開発とその適用、脱塩塔樹脂運用及びフィルタメッシユ選定の更なる最適化検討を行う。
②  PWR一次系浄化耐酸化性イオン交換樹脂の適用
_イオン交換樹脂は過酸化水素を含む水の通水等により酸化し、TOC、硫酸イオンの放出量が多くなる。そのため、イオン交換容量に余裕があっても取替える場合があり、架橋度を高くした耐酸化性イオン交換樹脂の実機適用性を評価する。
③  BWRのCUW・FPC系ろ過脱塩器樹脂の交換頻度の延長
_イオン交換樹脂は、廃棄物発生量軽減を図るため、高交換容量イオン交換樹脂の開発とその適用、及び樹脂寿命を勘案した樹脂交換の最適化検討を行う。
④  BWR 耐酸化性樹脂及び高浄化性能樹脂の開発
_イオン交換樹脂は酸素等の酸化剤を含む水の通水等により酸化し、TOC、硫酸イオンの放出量が多くなる。そのため、イオン交換容量に余裕があっても取替える場合があり、架橋度を高くした耐酸化性イオン交換樹脂の実機適用性を評価する。
⑤  ヒドラジン代替剤の実機適用性評価
_ヒドラジンの代替剤に関して、防食性能並びに高温での系統材料とのコンパチビリティーに関するデータを取得し、定常運転時の代替剤実機適用を目指す。
⑥  PWR アミン系水処理廃液の低減と処理技術の向上
_PWR二次系のpH調整剤として用いられるアミンは、一部のものはCOD管理対象薬剤となり、また、全てアミン基を有していることから窒素管理対象薬剤となる。このため、これら薬剤の使用量低減手法並びに脱窒手法の高度化を行う。
⑦  PWR 蒸気発生器二次側化学洗浄廃液処理技術の向上
_蒸気発生器の長期保全において、60年運転を達成するためには、蒸気発生器二次側の化学洗浄は必要な工程となりつつある。このため、化学洗浄で発生する廃液の処理手法の高度化を行う。
⑧  廃棄物中の14C低減
_14C生成インベントリ低減の観点では、原子炉水中の酸素からの生成については、プラントの運転方法を大きく変えることは出来ないことから対応が困難である。一方、窒素からの生成に着目した生成原因を特定し、廃棄物中の14C低減方策の検討を行う。また、廃棄物発生量低減の観点では、放射性廃棄物中への14Cの移行・付着メカニズムを解明し、放射性廃棄物への移行経路の遮断及び放射性廃棄物からの除去法について検討する。
導入シナリオとの関連 ・廃棄物量軽減に向けた技術の整備
→ 廃棄物量軽減により、発電所での保管量縮小による安全性、信頼性向上とともに、環境への漏えいに対するリスク低減となる。
・環境影響低減に向けた技術の整備
→ 環境への放出を低減でき、環境の安全性に貢献できる。

課題とする根拠
(問題点の所在)

①  イオン交換樹脂やフィルタは、プラント状態に対応した運用の最適化を検討し、廃棄物発生量抑制を図る必要がある。
②  耐酸化性イオン交換樹脂使用に向け、長期使用による劣化や使用済み樹脂の処理方法等、全体的な検討し、廃棄物発生量抑制を図る必要がある。
③  CUW・FPC系ろ過脱塩器樹脂の長期間使用を検討し、廃棄物発生量抑制を図る必要がある。
④  イオン交換樹脂の劣化速度や浄化率低下を防ぐ新樹脂の開発を行い、出力増強等に備えておく必要がある。
⑤  ヒドラジンは変異原生が認められていることから、環境への放出の低減が求められていることから、使用量を減らす必要がある。
⑥  水質汚濁に関する環境基準を遵守するために、アミン系水処理廃液の低減手法及び処理手法の高度化を検討する必要がある。
⑦  洗浄廃液の処理手法を確立し、環境への洗浄薬品等の放出量を削減する必要がある。
⑧  14C生成原因及び移行経路を特定し、廃棄物中の14C発生抑制を図る必要がある。
現状分析 ①  イオン交換樹脂やフィルタは、プラント固有差があることから、最適化の余地があると考えられる。
②  架橋度を高めたイオン交換樹脂は一部のプラントで使用が始まっている。
③  CUW・FPC系ろ過脱塩器の樹脂は、残交換容量を確認していないため、交換頻度を延長する余地があると考えられる。
④  原子炉出力増大に伴う復水温度の上昇等により現状の樹脂では寿命が短くなることが想定され、廃樹脂発生量増加が懸念される。また、プラント長期停止による廃樹脂発生量増加も懸念される。
⑤  実機温度条件での材料に関する材料健全性データを取得し、ヒドラジン代替剤の定常運転中への適用性評価を行う必要がある。
⑥  全窒素については、必ずしも低減対策が取られていない状況にある。
⑦  蒸気発生器性能回復のために化学洗浄が行われており、環境負荷低減を図るためにも効率的な廃液処理手法を構築する必要がある。
⑧  インベントリ低減の観点では、酸素からの発生抑制はプラント運転上困難なことから、窒素に着目した14C発生抑制方策を構築する必要がある。また、廃棄物発生量低減の観点では、放射性廃棄物中への14Cの移行メカニズムを解明し、放射性廃棄物への移行経路の遮断及び放射性廃棄物からの除去法について検討する。

期待される効果
(成果の反映先)

    • 被ばく線源の増加を避けながら廃棄物発生量の低減が可能となる。
    • 環境の安全性に貢献できるとともに環境負荷の低減が可能となる。
実施にあたっての問題点 ①  系統水中の粒径分布等を測定するには時間を要するため、プラント間で比較可能な調査要領を準備しておく必要がある。
②  樹脂の性能確認だけでなく、使用済み樹脂の処理方法や樹脂移送上の物理的な性質も確認しておく必要がある。
③  実機での効果確認に時間を要する。
④  海外動向を把握する必要がある。
⑤  ヒドラジン代替剤の定常運転時に関するデータを拡充するには、PWR環境を模擬した高温・高圧水環境下で長時間試験が必要である。
⑥  PWRに実機適用可能な全窒素の低減手法、処理手法の高度化について技術的な検討が必要である。
⑦  化学洗浄廃液処理手法の高度化について技術的な検討が必要である。
⑧  14C発生原因及び移行経路の特定が必要である。
必要な人材基盤 (1)人材育成が求められる分野

    • 水化学、放射線防護

(2)    人材基盤に関する現状分析

    •  環境影響低減のための水化学管理技術はメーカや電気事業者が開発を継続してきており、現在は十分な人材の確保に努めているが、継続して開発を進めるために人員の維持が必要である。官・学には水化学の専門家が少ない。
    •  技術の実証のためには実験炉や高温高圧環境下での長時間試験を行う必要があるが、必ずしも十分ではない。

(3)    課題

    • 必要とされる人材規模は、原子力発電に関する国の方針に依存し、これに対応して、計画的かつ継続的な人材確保が必要である。
    • 東電福島第一事故後の原子力プラントの長期停止により、実際に経験を積む場が損なわれている。
    • 優秀な人材を惹きつけるという意味において、東電福島第一事故とそれに続く原子力プラントの長期停止は、若い世代の原子力離れを招いている。
他課題との相関
    • S111_d32:状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
    • S111_d33-1 被ばく低減技術の高度化(水質管理技術、遠隔操作・ロボット技術、放射線防護技術)
    • S111_d39 検査・補修技術の高度化
    • M107_d34 保守・運転管理の合理化・省力化による保守・運転員負荷軽減
    • S113_d45 処分場の設計・評価技術の確立による社会的受容性の向上
実施時期・期間 中期(2030年)
実施機関/資金担当

<考え方>

産業界・学協会/産業界

    • 廃棄物量軽減に向けた技術の整備
    • 環境影響低減に向けた技術の整備

<考え方>

    • 電気事業者は、事業主体としてプラント要件を取り纏めるとともに、プラントへの適用性評価を行う。
    • メーカは、プラント設計を熟知していることから、具体的な設計とプラントに合った技術開発を行うとともに、電に事業者が実施するプラントへの適用性評価を支援する。
    • 研究機関は、技術開発に必要な要素技術を開発する。
    • 大学は、技術開発に必要な要素技術を開発する。
    • 実施主体が資金担当となることが適当と考える。

原子力規制委員会/原子力規制委員会
(必要に応じ、規制の枠組みの整備、技術評価)
<考え方>

    • 電気事業者は、新規制基準及び軽水炉安全技術・人材ロードマップに則り、事業主体として安全性向上に努める。
    • 電気事業者は、事業主体として保全の信頼性向上に努める。
    • メーカは、必要な技術開発に努める。
    • 原子力規制委員会は、電気事業者のニーズを踏まえて規制基準及び導入の枠組みを定め、技術評価を行う。
    • 実施主体が資金担当となることが適当と考える。
その他

 

6.2.1 被覆管・部材の腐食/水素吸収対策

_燃料被覆管・部材の腐食/水素吸収を設計基準範囲内に維持するための通常運転時の水質管理は、プラントの安全性維持に必要な深層防護のレベル1「異常・故障の発生防止」に該当する。また、通常運転時の状態を逸脱した場合の対応はレベル2「異常・故障の拡大防止」に該当する。さらに、シビアアクシデント前後における被覆管のZr-水反応、炉心溶融後の水素発生挙動、炉心溶融に伴うFPの核種、性状、放出・移行挙動、及びATF等改良型燃料の被覆管・部材の耐食性向上には水化学の関与が想定されることから、レベル4「設計基準を超す事故への施設内対策」に該当する。一方、設計基準事故やシビアアクシデント発生時のサンプスクリーン、及び事故時の燃料プール内の燃料の腐食/水素吸収対策に果たす水化学の役割は殆どないため、レベル3「事故の影響緩和」には該当しない。
_実機に新たな水化学技術を導入する際、燃料健全性評価に対し、想定される燃焼度を包絡した照射試験による評価手法が用いられてきた。これに対し、1F事故後、国内の多くの照射試験炉の廃炉が決定され、当面は新設の計画もない。このため、日本原子力学会核燃料部会で検討中の『燃料高度化に関するロードマップ』では、新たな燃料評価手法が必要と指摘されている。これは、現象論的(経験論的)健全性評価手法から、メカニズムに立脚した機構論的な健全性評価手法への転換の重要性と必要性を示しており、核燃料-水化学の境界領域では、燃料被覆管・部材の腐食、及び腐食に密接に関連した水素吸収のメカニズム解明とそれに基づくモデル開発のニーズがあるといえる。
_腐食/水素吸収メカニズムに立脚したモデルが開発され、それを包含した機構論的評価手法が確立されれば、水化学高度化やATF等の改良型燃料の被覆管の開発に対し、実証的な健全性評価手法の全部、または一部を省略でき、加えて加速試験による評価も可能となる。これにより、現行炉のみならず、次世代炉の燃料開発や燃料健全性評価に係わる時間とコストの削減に繋がるものと考えられる。また、このような評価手法を標準とすることで、公開性・透明性のある安全審査を迅速に行うことが期待される。さらに、構築したモデルや健全性評価手法を国際標準とすることにより、我が国の燃料開発や水化学高度化に対する国際競争力の強化に繋がる可能性がある。このためには、国外動向を見極めつつ、モデル構築と水化学影響を考慮した機構論的評価手法を駆使した燃料開発を、産官学連携により効率的に行う必要がある。このアプローチは当該分野の嚆矢となるものと考える。
_国内の軽水炉においては、プラントの安全運転と事故時対応が喫緊の課題であり、核燃料分野においては、事故時の更なる安全性向上に向け、FP放出低減/温度上昇抑制ペレットの開発と専用の通常時材料劣化低減被覆管の開発が加速されるとともに、事故時(LOCA、Post-DNB)高温酸化劣化抑制部材(被覆管/集合体)やATFの開発と実機への早期導入が検討されている。また、『燃料高度化に関するロードマップ』の中では、従来の軽水炉利用高度化(出力向上、最適運転サイクル対応)及び燃料高度化(高燃焼度化、MOX)もプラント運用のオプションとして位置づけられている。
_一方、水化学分野では、2011年3月の1F事故前は、水化学の高度化は主に構造材料と燃料の健全性維持・向上や線源強度低減等を目的に実施されてきた。事故後は、先行する海外事例を参考に、高経年化対応、線源強度低減に向けた新たな水化学技術の開発が計画されている。
_燃料被覆管の腐食は、ジルカロイ合金と水との反応により生じた水素がジルカロイ合金中に取り込まれ生じる。ジルカロイ合金中にNb等の微量元素を添加し、結果的に表面酸化皮膜を介しての水素の拡散を抑えているが、水素取り込み抑制のメカニズムについては未だ定説がない。
_また、燃料被覆管/冷却水界面は水化学の影響を大きく受ける。さらに、MOX燃料の採用等によりラジオリシスが変化する可能性もある。このことから、燃料被覆管・部材、及び運転管理が変更したとしても、燃料被覆管・部材への酸化物付着の制御により線源強度の上昇を抑制しながら、燃料被覆管・部材の耐食性を確保する役割が水化学に新たに求められるようになった。このため、従来、先行照射によって実証してきた燃料被覆管・部材の腐食や水素吸収特性について、そのメカニズムに立脚したモデルを構築し、様々な運転条件や水化学環境における使用範囲を合理的に(迅速かつ精度良く)評価できる手法を確立することが重要となった。
被覆管・部材の腐食/水素化に関する現状、研究方針と課題、及び産官学の役割分担について以下に述べる。

(A)現状分析
_ジルコニウム合金の一様腐食は燃焼度に比例することは判っているが、時間に対して単調増加せず変極点をもって急増するブレーカウェイ現象[6.2.1-1] の原因や水素吸収機構については諸説あり、理解の統一に至っていない。水化学が被覆管と部材の腐食に影響することは明らかであるが、影響因子の定量的影響や重畳効果はほとんど判っていない。また、ジルコニウム合金中に吸収される水素の大半は、腐食によって生成すると考えられているが、吸収機構については諸説あり、その複雑さゆえに統一的理解に至っていない。

(1) 被覆管・部材の腐食/水素吸収メカニズムの解明
_新規に開発した燃料の健全性評価は、現在、先行照射等の試験結果に基づく評価(現象論的評価)が主体となっている。燃料被覆管の耐食性/水素吸収特性と水質因子との相関を含め、ATF等の改良型燃料のみならず現行燃料に対しても、被覆管・部材の腐食/水素吸収性に係わる統一的な機構論は明確になっていない。また、水質変更の際、燃料被覆管への影響も考慮すべきであるが、水化学の変更がATF等の改良型燃料の被覆管腐食にどのように作用するか明確になっていない。燃料被覆管・部材の腐食/水素吸収特性は、プラント、水化学、燃料の材料因子が複雑に関与しており、これら因子を結び付ける統一的なモデルの構築に着手できていない。
_実施にあたっての問題点としては、本課題は原子力安全とも大きく関連することから、課題解決には緊急性を要する。

(2) 被覆管・部材の腐食/水素吸収対策技術の開発
_ATF等の改良型燃料の被覆管・部材の腐食/水素吸収メカニズムに立脚した水化学対策技術は確立されていない。対策技術の開発にあたり、燃料被覆管の腐食/水素吸収に及ぼす水質やプラント運転に係わる因子等について、現知見を下記に示す。

① 燃料被覆管の腐食/水素吸収に関する評価手法の確立
_現行の燃料被覆管の腐食/水素吸収に関する評価手法では、想定する燃焼度を包絡した照射試験が不可欠であり、専用設備の整備等過大な時間及びコストが必要となる。

② 燃料被覆管の腐食/水素吸収挙動への水環境中水素の影響評価
_ジルカロイ腐食量に対する溶存水素の影響については、1960年代の古いデータ[6.2.1-2]は存在するものの、比較的最近の、かつ詳細なデータが不足している。

③ 水化学高度化の影響評価(溶存水素最適化、pH管理最適化、亜鉛注入、NMCA、新SCC対策技術)
_ジルカロイ-2被覆管への一様腐食や水素吸収に対しては、NMCA(noble metal chemical addition、貴金属注入)、酸化チタン注入、OLNC(on-line noble metal chemical addition、オンラインNMCA)とHWCや亜鉛注入を併用した場合においても、その影響は認められていない[6.2.1-3 6.2.1-4 6.2.1-5 6.2.1-6]
_材料やプラントの既取得データを基に、フィッティングにより水化学の影響を評価している。例えば、米国EPRIのB. Chengらは、Li濃度、熱流束、照射、水素化物加速因子等を取り込んだ酸化膜厚さ予測モデルを提案している[6.2.1-4]。しかしながら、依然として新たな水化学に対するデータやデータベースが不足している。
_一方、国内のプラントでは、水化学の変更に伴い、定期検査時に燃料被覆管の酸化皮膜厚さを計測する場合がある。しかしながら、計測の労力と費用削減の観点から、データベース等の整備やモデルの構築が望まれている。

④ 軽水炉利用高度化等による影響評価
_軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)に伴い、燃料被覆管の腐食に影響する水化学因子の特定、影響度について明らかになっていない。また、プラント状態、水化学、核燃料分野をまたぐ横断的な評価法も存在しない。

⑤ 水化学を利用した燃料健全性維持・向上策の検討
_PWRでは、燃料被覆管・部材の腐食低減策にはリチウムの低減が好ましいが、サイクル初期ではほう素濃度が高いため冷却系のpHが低下し、線源強度低減及びプラント材料健全性の点からは好ましくない。このため、濃縮10Bの適用、またはカリウム(K)等、リチウム(Li)に代わるpH調整剤の検討が進んでいる[6.2.1-7]。被覆管の腐食はpHが11.5を超えると加速される[6.2.1-8]。影響はリチウム濃度が20~30ppm程度以上の場合、ジルカロイ被覆管表面の酸化皮膜内にリチウムが取り込まれ、腐食を加速する[6.2.1-9]。このとき酸化皮膜中のリチウム濃度は50~100ppm程度であり、照射場における表面酸化皮膜中のリチウム濃度は15~115ppm程度と報告されている[6.2.1-10. 6.2.1-11]6Li(n、α)3H反応により生成した水素のジルカロイ合金中への取り込みも想定されるが、生成する水素量は微量であり、その影響については不明である。
_米国の一部のPWRでは24カ月運転を採用している。この場合、サイクル初期は炉心反応度制御(ケミカルシム)を適切に管理するため、ほう素濃度を13か月運転時の比べ高く維持する必要があることから、添加するリチウムを6~7ppmに高める必要がある [6.2.1-12]。一方、カリウムはリチウムに比べ燃料被覆管腐食に及ぼす影響が小さいことに加え、リチウムの資源量の制約から、近年、代替剤としてKOHの代替適用が検討されるようになってきた。しかしながら、カリウムは運転サイクル中にも添加する必要があることから、10B(n、α)7Li反応により生成するリチウムとの共存により、浄化プロセスやpH管理が複雑化することへの対応等、課題解決が残っている。
_BWRでは、構造材料の腐食抑制を目的とした水化学の導入に際し、燃料被覆管の腐食に及ぼす影響評価も行っている。しかしながら、PWR、BWRとも、燃料被覆管に対する腐食抑制対策についての具体的な検討は十分でない。

⑥ 燃料腐食モニタリング技術開発
_オンサイトでの追加検査は大掛かりになる傾向があり、腐食モニタリングデータの拡充の上では障害となっている。

⑦ 水素分析簡便化技術開発
_超音波探傷(UT)による支持格子への適用検討例はあるが、簡便な水素分析手法はない。

⑧ オンラインクラッド付着モニタリング技術開発
_現状、確立されたオンラインモニタリング技術はない。

(3) データや評価技術の検証
_ATF等の改良型燃料を含め、被覆管・部材の腐食/水素吸収と水化学との相関に係わるデータの整備や評価技術は確立されていない。

(4) 被覆管・部材の健全性評価に係わる規格基準の策定
_ATF等の改良型燃料を含め、被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が及ぼす影響に関する最新知見に基づいた管理項目等を原子力学会指針に規定している。

(B)研究方針と実施にあたっての問題点
_今後、導入が計画されているATF等の改良型燃料に対し、被覆管・部材の腐食/水素吸収対策を講じることにより、プラントの安全性・効率、公益性のさらなる向上に大きく貢献できる可能性がある。現状では、実機の現象と試験結果とが一致しない場合があることから、先行照射等の試験結果に基づく評価(現象論的評価)の依存度が大きい。腐食/水素吸収メカニズムに立脚したモデルが開発され、それを包含した機構論的評価手法が確立されれば、水化学高度化や燃料被覆管材料の改良等の変化に対し、実証的な健全性評価手法の全部または一部を省略でき、加えて加速試験による評価も可能となる。このようなアプローチは、現行炉のみならず、次世代炉の燃料開発や燃料健全性評価に係わる時間とコストの削減に繋がる。
_また、腐食/水素吸収モデル及び健全性評価手法を標準化することにより、安全審査にも利用でき、維持管理(検査・取替)の合理化と併せ、プラントの公益性を高めることに寄与できる。このためには、産官の協調の下に標準モデルを構築していくことが不可欠である。メカニズム解明については学の協力も必要不可欠であり、このようなスキームをもってモデルを開発していくことが重要であり、実効性も兼ね備えると考えられる。
_実施にあたっての課題全体の問題点としては、原子力安全とも大きく関連することから、課題解決には緊急性を要する。また、研究開発のための資金確保が必要である。
_以下に研究方針と課題を示す。

(1) 被覆管・部材の腐食/水素吸収メカニズムの解明
① 従来知見の整理
_クラッド付着・剥離挙動を定量的かつ正確に把握するため、従来の照射後試験等の調査結果、国内外のプラントデータやラボデータを含め、従来知見を整理する。

② 燃料被覆管・部材の腐食/水素吸収メカニズムの解明
_燃料被覆管・部材の腐食/水素吸収挙動は、水化学環境因子と熱水力因子等が複合する事象であり、これを適切に制御するには、燃料被覆管・部材の腐食/水素吸収挙動に及ぼす水化学因子の効果・影響を定量化した上で、メカニズムを解明する必要がある。

(2) 被覆管・部材の腐食/水素吸収対策技術の開発
① 燃料被覆管・部材の腐食/水素吸収モデルの構築
_これまで燃料被覆管・部材の腐食挙動は、水蒸気酸化雰囲気下における被覆管・部材の酸化試験結果を基に、被覆管材料中の不純物や欠陥等に起因する酸化モデルが検討され、水化学等の環境因子の影響はモデルには十分反映されていなかった。このため、試験研究等により、温度、水分解生成物(ラジオリシスにより生成する水素、過酸化水素、酸素等)、炉水添加物、炉水中不純物、酸化物の種類(化学組成、化学形態)と付着量、放射線の直接的影響を定量化しつつ、既存の被覆管酸化モデルの改良・高度化を進める必要がある。

② 水化学改善による燃料被覆管・部材の腐食/水素吸収対策技術の開発
_水質面からの新たな対策を施すには燃料被覆管への影響を考慮する必要がある。このためには、燃料被覆管の耐食性・水素吸収特性と水質因子との相関の明確化が求められる。

(3) データや評価技術の検証
_ATF等の改良型燃料の被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化に起因した破損、異常や事故に至ることがないよう、データや評価技術を検証する。
_燃料被覆管の腐食/水素吸収モデルの開発にあたっては、照射試験炉や実機を活用し、評価結果と実機現象との整合性を確認する必要がある。また、ATF等の改良型燃料を含め、被覆管・部材の健全性維持に対する水化学改良策の有効性と再現性をチェックしながら、モデルや評価手法を検証する必要がある。必要に応じ評価手法を見直すことも重要である。国外を中心に照射試験設備を有効利用するとともに、燃料被覆管・部材の健全性と損傷に関するデータベースを構築・拡充することにより、ラボデータと実機現象との乖離を小さくし、構築したモデルや評価技術の検証を合理的に行う必要がある。
_また、評価の高速化と精緻化に向け、簡便かつ高精度な燃料被覆管・部材腐食モニタリング技術、水素分析簡便化技術、オンライン酸化物モニタリング技術、ならびにECPや光電気化学等のモニタリング技術等の開発やラジオリシスモデルの精緻化を図る必要がある。

(4) 被覆管・部材の健全性評価に係わる規格基準の策定
_ATF等の改良型燃料の被覆管・部材の腐食/水素吸収モデルを活用していくには、安全審査との適合性を図る必要がある。予防保全としてのモデルの有効性を、各種試験やモニタリング等により検証する。また、燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることを防ぐことを目的とし、標準化に適した水化学管理技術を日本原子力学会の水化学管理指針に取り入れる。さらに、燃料被覆管・部材の健全性に係わる最新知見に基づき、必要に応じ水化学管理指針の管理項目等の設定値を見直す。このためには、産官学が連携して、試験方法や評価方法、モデルの検証方法の標準化を図ることも重要となる。
_腐食/水素吸収モデルの開発、検証、標準化には、水化学分野と燃料分野が協働で進めることが重要かつ合理的であり、以下に示す情報交換体制の整備が必要と考える。

    • 核燃料分野と水化学分野の連携
    • 情報交換・検討の場の設置

(C) 産官学の役割分担の考え方
① 産業界の役割

    • 被覆管・部材の腐食/水素吸収評価手法の開発・高度化・標準化
    • 被覆管・部材の腐食/水素吸収対策技術の開発・高度化・標準化
    • 被覆管・部材の腐食/水素吸収に及ぼす環境因子の影響に関するデータ整備・高精度化

② 国・官界の役割

    • データや評価技術の検証
    • 安全規制行政
    • 学協会基準のエンドース・規制基準の整備
    • 基盤の整備(知識、人材、照射試験炉、制度の整備)

③ 学術界の役割

    • 被覆管・部材の腐食/水素吸収メカニズム解明への支援
    • 被覆管・部材の腐食/水素吸収に関する基盤研究(反応機構、速度定数、表面・隙間における照射、被覆管表面の沸騰・流況の影響等)

④ 学協会の役割

    • 規格基準の作成・精緻化

⑤ 産官学の連携

    • 被覆管・部材の腐食/水素吸収メカニズム解明(環境因子の効果・影響)
    • 被覆管・部材の腐食/水素吸収に関する基盤研究
    • 被覆管・部材の腐食/水素吸収メカニズムの解明及び対策立案を担う人材の育成
    • 照射試験炉の整備・利用
    • 照射試験炉を用いた各種モニタリング技術の開発

(D) 関連分野との連携
① 燃料高度化

    • 線源強度低減対策としての水化学の高度化(水化学条件の変更)がATF等の改良型燃料を含む被覆管・部材の腐食・水素化に及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。
    • 軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)が被覆管・部材の腐食・水素化に及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。

② 高経年化対応

    • SCC及び配管減肉の環境緩和対策としての水化学の高度化(水化学条件の変更)が被覆管・部材の腐食・水素化に及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野での連携により、効率的かつ合理的に技術開発を行う必要がある。
    • 軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)とSCC及び配管減肉の環境緩和対策としての水化学の高度化(水化学条件の変更)が重畳する場合、被覆管・部材の腐食・水素化に及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。

図6.2.1-1に被覆管・部材の腐食/水素吸収対策に係わる導入シナリオ、表6.2.1-1に技術マップ、図6.2.1-2にロードマップを示す。

参考文献

[6.2.1-1] 日本原子力学会編, “原子炉水化学ハンドブック”, コロナ社 (2000).
[6.2.1-2] E. Hillner, “Hydrogen Absorption in Zircaloy during Aqueous Corrosion, Effect of Environment”, WAPD-TM-411 (1964).
[6.2.1-3] R. L. Cowan, “BWR Water Chemistry…A delicate Balance”, Proc. Int. Conf. on Water Chemistry of Nuclear Reactors System 8, p.97-102 (2000).
[6.2.1-4] B. Cheng et al., Proc. Int. Meeting on LWR Fuel Performance, Paper 1069 (2004).
[6.2.1-5] Y. Ishii et al., “The Effect of TiO2 on Corrosion on Behavior of Zircaloy-2 Fuel Cladding”, Proc. 2005 Water Reactor Fuel Performance Meeting, Paper 1100 (2005).
[6.2.1-6] S. E. Garcia and C. J. Wood, “Recent Advances in BWR Water Chemistry”, Proc. Int. Conf. on Water Chemistry of Nuclear Reactors System 2008 (NPC’08), Paper L04-1 (2008).
[6.2.1-7] Lena Oliver et al., “Westinghouse VVER Fuel Experience and Fuel QUALIFICATION Need for INTRODUCING KOH in PWR”, Proc. 21st Int. Conf. on Water Chemistry in Nuclear Reactor Systems (2018).
[6.2.1-8] E. Hillner, “The Effect of Lithium Hydroxide and Related Solution on the Corrosion Rate of Zircaloy in 680oF Water”, WAPD-TM-307 (1962).
[6.2.1-9] F. Garzarolli et. al., 1989 IAEA Meeting, Portland (1989).
[6.2.1-10] H. Stehle et. al., ASTM STP 824, p.483-506 (1984).
[6.2.1-11] P. Billot et. al.、 ANS/ENS Meeting, Avignon (1991).
[6.2.1-12] J. N. Iyer et al., “ZIRLOTM Clad Fuel Performance in Simultaneous Zinc and Elevated Lithium Environment”, Proc. of Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Paper L13-3 (2008).

課題調査票

課題名

核燃料被覆管の健全性維持

マイルストーン
及び
目指す姿との関連

短Ⅴ. 保全・運転の負荷軽減・品質向上
⇒自主的安全性向上の効果的・継続的な取り組みにより、保全・運転管理の高度化を図る必要がある。さらに、安全性向上を図りながら、我が国の原子力発電所従事者の被ばく量を低減する取組を行う必要がある。中Ⅱ. 既設プラントの高稼働運転と長期安定運転の実現
⇒電力安定供給性かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期安定運転が必要となる。

概要(内容)

(1) 被覆管・部材の腐食/水素吸収メカニズムの解明
_通常運転時の水質変化が燃料被覆管・部材の腐食/水素吸収性に影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、燃料被覆管・部材の腐食/水素吸収性に及ぼす水質変更の影響を機構面から明らかにする。対象とする被覆管は従来材に加え、事故耐性燃料も含む。(2) 被覆管・部材の腐食/水素吸収対策技術の開発
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、燃料被覆管・部材の腐食/水素吸収対策を検討する。(3) データや評価技術の検証
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、データや評価技術を検証する。

(4) 被覆管・部材の健全性評価に係わる規格基準の策定
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることを防ぐことを目的とし、標準化に適した水化学管理技術を学会指針に取り入れる。また、燃料被覆管・部材の健全性に係わる最新知見に基づき、必要に応じ水化学管理指針の管理項目等の管理項目等の設定値を見直す。

導入シナリオとの関連

水化学による燃料被覆管・部材の腐食/水素吸収対策技術の開発による核燃料の健全性維持

課題とする根拠
(問題点の所在)

水化学RMと深層防護との関連付けの検討結果を参照

現状分析

(1) 被覆管・部材の腐食/水素吸収メカニズムの解明
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に及ぼす水質変更の影響に関する統一的な機構論は明確になっていない。(2) 被覆管・部材の腐食/水素吸収対策技術の開発
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収メカニズムに立脚した水化学対策技術は確立されていない。(3) データや評価技術の検証
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収と水化学との相関に係わるデータの整備や評価技術は確立されていない。

(4) 被覆管・部材の健全性評価に係わる規格基準の策定
_事故耐性燃料を含む燃料被覆管・部材の腐食/水素吸収性に対し、通常運転時の水質変化が及ぼす影響に関する最新知見に基づいた管理項目等を原子力学会指針に規定している。

期待される効果
(成果の反映先)

    • 原子力発電所の高稼働運転における核燃料の健全性維持及び環境負荷軽減が可能となる。
    • 燃料等の炉心構成要素の高度化や、原子炉の運転条件が見直された場合においても、運転上の制限を遵守し安全余裕を確保した状態で原子炉の運転が可能となる。

実施にあたっての問題点

課題全体の共通問題として下記がある。

    • 原子力安全とも大きく関連することから、課題解決には緊急性を要する。
    • 研究開発のための資金確保が必要である。

必要な人材基盤

(1)    人材育成が求められる分野

    • 水化学、状態監視技術

(2)    人材基盤に関する現状分析

    • 事業者においては、現在導入している状態監視技術に関する知識・技能を有した人材の育成が行なわれてきた。
    • メーカでは原子力設備の海外輸出等を通じて、必要な技術開発にかかる人材の育成を行っている。
    • 大学等では、共同研究やインターンシップ等により、人材育成や人的交流を図ってきた。
    • 水化学技術は、原子力発電所の保全のみならず、リスクの概念を併用すれば、安全の確保の基本となる技術の一つであり、必要な人材基盤を継続して確保していくことが重要である。今後も人材基盤を維持していくためには、大学等の教育段階から優秀な人材を集め、かつ、人材を計画的に育成していくとともに、実際に炉心設計、運用管理の経験を積んでいくことが必要である。
    • 海外の実用化技術の反映にとどまらず、その改良をもって、更なる原子力安全に役立つ運用管理技術を国際的に展開できる人材を育成し、活躍してもらうことが必要。
    • 特に海外で豊富な実績を有する解析手法等については、その迅速かつ円滑な導入を促す仕組みの充実(国際共同研究、国際会議、人的交流等の活性化等)。

(3)    課題

    • 必要とされる人材規模は、原子力発電に関する国の方針に依存し、これに対応して、計画的かつ継続的な人材確保が必要である。
    • 1F事故後の原子力プラントの長期停止により、実際に経験を積む場が損なわれている。
    • 優秀な人材を惹きつけるという意味において、1F事故とそれに続く原子力プラントの長期停止は、若い世代の原子力離れを招いている。

他課題との相関

    • 「炉心・熱水力設計評価技術の高度化」(ロードマップ)
    • S111_d32:状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
    • M107_d38 建屋構造・材料の高度化
    • S111M107_d36:高経年化評価手法・対策技術の高度化
    • M107_d25:運転性能の高度化(事象進展抑制、停止機能、L/F等)
    • S103_b07:廃棄物長期保管に向けた健全性評価技術、管理技術の高度化
    • M106_c01:計測技術・解析技術の高度化

実施時期・期間

中期(2030年)

実施機関/資金担当
<考え方>

産業界/産業界
_事故耐性燃料を含む被覆管・部材の腐食/水素吸収メカニズムの解明、被覆管・部材の腐食/水素吸収対策技術の開発、データや評価技術の検証等に必要な技術開発を実施
<考え方>

    • 電気事業者は、事業主体としてプラント要件を取り纏めるとともに、プラントへの適用性評価を行う。
    • メーカは、プラント設計を熟知していることから、具体的な設計とプラントに合った技術開発を行うとともに、電に事業者が実施するプラントへの適用性評価を支援する。
    • 研究機関は、技術開発に必要な要素技術を開発する。
    • 大学は、技術開発に必要な要素技術を開発する。
    • 実施主体が資金担当となることが適当と考える。

原子力規制委員会/原子力規制委員会
(必要に応じ、規制の枠組みの整備、技術評価)
<考え方>

    • 電気事業者は、新規制基準及び軽水炉安全技術・人材ロードマップに則り、事業主体として安全性向上に努める。
    • 電気事業者は、事業主体として保全の信頼性向上に努める。
    • メーカは、必要な技術開発に努める。
    • 原子力規制委員会は、電気事業者のニーズを踏まえて規制基準及び導入の枠組みを定め、技術評価を行う。
    • 実施主体が資金担当となることが適当と考える
    • 原子力規制委員会が規制の観点からが主体となる事項について資金担当となることが適切。

産業界・学協会/産業界
被覆管・部材の健全性評価に係わる規格基準の策定

    • 産業界(電気事業者、メーカ)が主体となって核燃料の健全性維持に必要な水化学技術の高度化を図る。
    • 学協会は、核燃料の健全性維持及び付随して必要となる水化学技術に係わる規格基準等について検討を行う。
    • 原子力規制委員会は、核燃料の健全性維持及び付随して必要となる水化学技術に係わる規格基準を整備し、技術評価及び認可を行う。
その他

 

6.2.2 燃料性能維持(CIPS対策)

_CIPSは、クラッドが燃料の軸方向に不均一に付着し、ほう素の不均一析出により、炉心の軸方向の線出力分布(偏差)に異常を生じる事象である[6.2.2-1 6.2.2-2]。本事象の進行に伴い、炉心の安全性に支障を来たす恐れや、燃料の健全性に問題を生じる可能性がある。また、軸方向のピーク位置での出力を抑えるため、炉心全体の出力を下げる必要が生じ、場合によっては、プラントや燃料の運用効率に支障を来たすことになる。
_CIPSはPWR固有の事象で、米国や欧州ではその発生が確認されている。特に、600合金製のSG伝熱管を有するプラントのうち、炉心燃焼指数の高い(HCDI値>150)プラントでCIPSが多く発生している。CIPSの発生には、被覆管表面でサブクール沸騰が発生するような熱水力条件、燃料被覆管表面での十分な厚みのクラッド層の形成及びクラッド層内へのほう素の取り込みと蓄積の3条件が関与しているとされている。
_現在、我が国のPWRではCIPSの発生は認められていない。これは燃料表面でサブクール沸騰が生じるような高負荷条件で運用されていないことや、厚いクラッド層の形成やクラッド内へのほう素の蓄積が顕在化するような環境下で運転されていないためと考えられる。
_CIPSを抑制するための通常運転時の水質管理は、プラントの安全性維持に必要な深層防護のレベル1「異常・故障の発生防止」に該当する。また、通常運転時の状態を逸脱した場合の対応はレベル2「異常・故障の拡大防止」に該当する。一方、設計基準事故やシビアアクシデント発生時のサンプスクリーン、及び事故時の燃料プール内の燃料のCIPS対策に果たす水化学の役割は殆どないため、水化学レベル3「事故の影響緩和」には該当しない。また、シビアアクシデントの前後における被覆管のZr-水反応、炉心溶融後の水素発生挙動、炉心溶融に伴うFPの核種、性状、放出・移行挙動に対するCIPSの関与は非常に小さいことから、レベル4「設計基準を超す事故への施設内対策」にも該当しない。
_我が国においては、FP放出低減/温度上昇抑制ペレットの開発と通常時材料劣化低減被覆管の開発が加速されるとともに、事故時(LOCA、Post-DNB)高温酸化劣化抑制部材(被覆管/集合体)や事故耐性燃料(Accident Tolerant. Fuel、以下ATF)の開発と実機への早期導入が検討されている。2011年3月の1F事故以降も、従来の軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)もプラント運用のオプションとして残されている。このため、これら技術開発は、日本原子力学会核燃料部会で検討中の『燃料高度化に関するロードマップ』にも位置づけられている。
_運転サイクルの変更に伴い、一次冷却材水質を変更(pH低下等)する場合や、炉出力向上によりサブクール沸騰が生じる場合、またこれらが複合的に生じる場合には、従来燃料、ATF等の改良型燃料を問わず、被覆管表面へのクラッド付着が促進されCIPSに至る可能性がある。PWRの再稼働後もこのような運転管理の変更に対応し、構造材の健全性や被ばく線量率の上昇を抑制しながら燃料の性能維持ならびにCIPS対策を講じ、プラントの安全性・信頼性維持、高効率化を図る役割が水化学に新たに求められるようになった。
_このため、標準化やガイドライン等の作成も視野に入れた上で、熱水力的因子等も考慮したCIPSモデルの構築と評価手法の開発による合理的かつ効率的な燃料性能維持、及びCIPS対策が重要となった。被覆管表面のへほう素の取り込み、チムニーを有するクラッドの異常成長メカニズムに立脚したモデルが開発され、それを包含した機構論的評価手法が確立されれば、水化学高度化やATF等の改良型燃料の開発等に対し、実証的な健全性評価手法の全部または一部を省略でき、加えて加速試験による簡易評価も可能となる。このようなモデルに基づく評価手法を規格基準化することにより、検査・補修・取替等の維持管理の合理化と併せ、被覆管や燃料部材の変更、運転管理の変更等に対し、迅速かつ的確に対応できる。
_燃料性能維持(CIPS対策)に関する現状、研究方針と課題、及び産官学の役割分担について以下に述べる。

(A) 現状分析
<加圧水型軽水炉(PWR)>
_CIPSの発生は、クラッド付着・剥離と密接に関連している。クラッド付着・剥離メカニズムは、水化学因子(Niやほう素濃度、Ni/Fe比、pH等)や熱水力因子(沸騰、流況等)が複雑に関与する。さらに、CIPSの発生は、炉水中のほう素濃度にも影響され、ほう素取り込み機構をはじめ、全体のメカニズムは明確になっていない。

(1) CIPS発生メカニズムの解明
_CIPSに及ぼす水質変更の影響に関する統一的な機構論は明確になっていない。影響因子ごとの現知見を以下に示す。

① クラッド付着・剥離に及ぼす燃料棒線出力及び沸騰状況の影響
_最近の実機調査やラボ研究によると、CIPSの直接の原因となるクラッド付着に関し、水化学影響因子として、炉水中のニッケル(Ni)濃度、Ni/Fe比、ほう素濃度、pH等が、熱水力因子として被覆管表面での沸騰や流況が、加えて放射線の影響も考えられるとの報告がある。
_現在、CIPSを経験している米国、フランス、韓国等において、実機調査とラボ試験を中心にクラッド付着及びCIPS発生原因の検討と対策が検討されている。米国電力中央研究所(EPRI)やフランス原子力庁(CEA)は、クラッドの沸騰析出や物質移動を考慮した溶解・析出モデルを提案しているが、クラッドの溶解・析出挙動や化学形態についても諸説があり、統一的なモデルの構築には到っていない。日本では、電中研が基礎研究に着手しており、非照射下ではあるものの、ラボ内でのクラッド付着の再現と水化学及び熱水力(沸騰、流況)因子の影響評価を行った。
_クラッド付着・剥離に及ぼす燃料棒線出力の影響を評価するには、付着・剥離挙動を定量的かつ正確に把握する必要がある。しかしながら、現状は、燃料の照射後試験から過度のクラッドが存在しないことの確認に留まっている。

② ほう素取り込み機構の解明
_CIPSメカニズム解明の観点からは、クラッドの付着挙動だけでなく、クラッド中に取り込まれるほう素の析出挙動の評価が重要である。CIPS発生プラントでは、クラッドのかきとり調査を行っているが、ほう素の取り込み形態等の分析結果がプラント間で異なる。米国のEPRI[6.2.2-3]、CEA[6.2.2-4]、スウェーデンのStudsvik[6.2.2-5]、韓国のKAERI[6.2.2-6]、及び電中研[6.2.2-7]が、ほう素取り込みに関する基礎研究を実施している。しかしながら、ほう素取り込み挙動は、炉水中のほう素濃度、Ni濃度、pH等の水化学因子や放射線の影響以外に、被覆管表面での沸騰や流況にも影響されるとの報告があり、また、沸騰析出や結晶析出、化学形態についても諸説があるため、いまだ統一的なモデルの構築には到っていない。

(2) CIPS対策技術の開発
_CIPS発生メカニズムに立脚した水化学対策技術は確立されていない。

(3) データや評価技術の検証
_CIPSと水化学との相関に係わるデータの整備や評価技術は確立されていない。

(4) CIPSに係わる規格基準の策定
_通常運転時の水質変化が燃料被覆管のクラッド付着に及ぼす影響に関する最新知見について、日本原子力学会指針「PWR一次冷却系水化学管理指針:2017」の解説に規定している。

<沸騰水型軽水炉(BWR)>
_CIPSの発生には、燃料被覆管付着クラッド内へのほう素の取り込みが深く関与すると考えられており、BWRプラントでは発生していない。現状ではPWRプラント固有の課題とされている。

(B) 研究方針と実施にあたっての問題点
_PWR再稼働後も軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)が計画されており、プラントや燃料に対する負荷は徐々に増加していくと考えられる。ここ数年間に適用される運用条件においては、CIPS発生の可能性は比較的低いものと予想される。従って、至近では、現象論的(経験的)評価手法により、先行プラントの実績から悪影響がないことの確認で充分と考えられる。しかしながら、長期で見た場合、燃料への過度なクラッド付着が懸念され、CIPSの発生リスクは高まる可能性がある。このため、従来の現象論的(経験的)評価手法でなく、機構論的(メカニズム)評価手法を確立することにより、実機先行試験に依存するのではなく、AOAリスク、及びリスクを最小限に抑えるのに最適な運用条件を検討する必要がある。これにより、プラントの安全性確保、高効率化、公益性向上に大きく貢献できるものと考えられる。
_現在、CIPSを経験している米国やフランスを中心に、クラッドの沸騰析出や物質移動を考慮した溶解・析出モデルが提案されているが、クラッドの付着・剥離挙動及びCIPSの主要因とされるほう素の取り込み挙動については諸説があり、いまだ統一的なモデルの構築には到っていない。その一因として、限られた実機データのみで検討せざるを得ず、これら挙動を定量的かつ正確に把握できていないことが挙げられる。
_この問題解決のためには、CIPS事象をメカニズムの視点から捉え、技術基盤を用いた試験結果に基づき、各因子の相関性をモデル化し、新しい評価手法を開発することが肝要である。このようなモデル及び新評価技術の開発は、水化学によるCIPS抑制効果の有効性評価、CIPS発生リスク評価に基づくプラント運用条件及び水化学の最適化・高度化に繋がると考えられる。
_燃料やプラントの信頼性及び運用効率の観点から、CIPSに関する課題解決は産官が共有するニーズとなる。モデルの構築とそれに基づく対策の立案には、情報、知見、人材、施設基盤の拡充が必要であり、産官学が適宜協力した体制で臨むことが肝要である。
_実施にあたっての課題全体の問題点としては、原子力安全とも大きく関連することから、課題解決には緊急性を要する。また、研究開発のための資金確保が必要である。
_以下に具体策を示す。

(1) CIPS発生メカニズムの解明
_通常運転時の水質変化がCIPSに影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、CIPSに及ぼす水質変更の影響を、機構面から明らかにする。

① 従来知見の整理
_CIPSの主たる原因であるほう素を含むクラッド付着・剥離挙動を定量的かつ正確に把握するため、これまでの燃料棒の照射後試験等の調査結果、国内外のプラントデータ、ラボデータを含め、従来知見を整理する。

② クラッド付着・剥離メカニズムの解明
_燃料被覆管へのクラッド付着・剥離は水化学因子と熱水力因子等が重畳する事象である。このため、クラッド付着・剥離モデルは、被覆管表面へのクラッドの析出・物理付着、成長、化学溶解・物理剥離等を考慮した定性的なものにとどまっている。燃料被覆管へのクラッド付着・剥離を適切に制御するためには、クラッド付着・剥離メカニズムを解明し、メカニズムに基づいて、付着・剥離に及ぼす水化学及び熱水力因子に対し個別の影響度と重畳効果による影響度を定量化する必要がある。

③ CIPS発生メカニズム(ほう素取り込みメカニズム)の解明
_CIPSメカニズム解明の観点からは、燃料付着クラッド内へのほう素の取り込み挙動の評価が重要である。今後、長期サイクル運転の導入により、CIPSリスクが増加する可能性があることから、ほう素の取り込みメカニズムを解明し、メカニズムに基づいて、ほう素の取り込みに及ぼす水化学及び熱水力因子に対し個別の影響度と重畳効果による影響度を定量化する必要がある。

(2) CIPS対策技術の開発
_通常運転時の水質変化がCIPSに影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないようCIPS対策を検討する。

① CIPS普遍モデルの構築
_新しい評価手法を確立するためには、(1)に示すように、各因子の影響を定量的に検討した上で、各相関をモデル化し、総合的なモデルを開発する必要がある。これらモデルは、ATF等の改良型燃料被覆管に対しても適用できるよう普遍的なものとする必要がある。

_a.燃料棒表面へのクラッド付着・剥離に及ぼす影響

        • 燃料棒線出力との相関、沸騰状況(サブクール沸騰)との相関
        • 水質条件が及ぼす影響

_b.燃料付着クラッド内へのほう素の取り込みに及ぼす影響

        • 燃料棒表面のクラッド付着状態との相関
        • 沸騰状況(サブクール沸騰)との相関
        • 水質条件との相関

② CIPS評価方法の適用
_従来の現象論的(経験的)評価は、計画している水化学対策やプラント運用条件を一部のプラントで先行運用し、悪影響が無いことを確認する手法である。ATF等の改良型燃料の採用や新たな水化学の採用に際し、CIPSへの影響を効率的に評価するには、従来の現象論的評価手法と新たに検討する機構論的評価手法とを選択・組み合わせた評価方法の導入が望まれる。これにより、様々なケースについてCIPS発生リスクを前もって評価できるとともに、実証的な確認を最小限行うことで合理的に運用条件の最適化が図れる。

③ CIPS防止対策技術の開発
_軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)に対応しつつ、CIPSの防止等燃料性能を維持していくには、水化学による対策も求められている。これに応えるには、高Li適用、溶存水素最適化等の水化学によるCIPS防止対策を検討する必要がある。なお、これら水化学高度化対策の適用にあたっては、新しい評価手法を用いたCIPS発生リスクの検証を合理的に行えると考えられる。また、クラッド付着・剥離挙動の把握は、被ばく線源強度低減等の対策立案に密接に関連するため、水化学高度化全体において重要度が高く、それらとの技術的な連携が必要である。

(3) データや評価技術の検証
_通常運転時の水質変化がCIPSに影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、CIPSに係わるデータや評価技術を検証する。また、燃料性能維持(CIPS対策)技術について、各種試験やモニタリング等により予防保全としての有効性を検証する。
_軽水炉利用高度化(出力向上、最適運転サイクル)及び燃料高度化(高燃焼度、MOX)に対応しつつ、CIPSの防止等燃料性能の維持に最適な水化学改良策の有効性を評価するには、クラッド付着・剥離挙動及びほう素取り込み挙動の再現性をチェックしながら、モデルや評価手法を検証する必要がある。必要に応じ評価手法を見直すことも重要である。このためには、照射試験設備を活用するとともに、クラッド付着・剥離及びほう素取り込みモニタリング技術を開発し、関連のデータベースを構築・拡充し、ラボデータと実炉現象との乖離を小さくする必要がある。また、照射試験炉を用いたモニタリング技術の開発やクラッド層内の核種移行モデル、燃料被覆管表面近傍のラジオリシスモデルの精緻化を図ることにより、燃料性能維持(CIPS対策)に関する評価技術を高度化するとともに、高度化した技術をプラントの維持管理に反映させるため、照射試験炉や実機において有効性を検証する。

(4) CIPSに係わる規格基準の策定
_通常運転時の水質変化がCIPSに影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることを防ぐことを目的とし、標準化に適した水化学技術を学会指針に取り入れる。また、燃料被覆管・部材の健全性に係わる最新知見に基づき、必要に応じ水化学管理指針の管理項目等の設定値を見直す。

(C) 産官学の役割分担の考え方
① 産業界の役割

    • 燃料性能維持(CIPS)評価手法の開発・高度化・標準化
    • 燃料性能維持(CIPS対策)技術の開発・高度化・標準化
    • 燃料性能維持(CIPS)に及ぼす環境因子の影響に関するデータ整備・高精度化

② 国・官界の役割

    • データや評価技術の検証
    • 安全規制行政
    • 学協会基準のエンドース・規制基準の整備
    • 基盤の整備(知識、人材、照射試験炉、制度の整備)

③ 学術界の役割

    • CIPS発生メカニズム解明への支援
    • 燃料性能維持(AOA対策)に関する基盤研究(反応機構、速度定数、表面・隙間における照射、被覆管表面の沸騰・流況の影響等)

④ 学協会の役割

    • 規格基準の作成・精緻化
    • 産官学の連携
    • CIPS発生メカニズム解明(環境因子の効果・影響)
    • 燃料性能維持(CIPS対策)に関する基盤研究
    • CIPS発生メカニズムの解明及び対策立案を担う人材の育成
    • 照射試験炉の整備・利用
    • 照射試験炉を用いた各種モニタリング技術の開発

(D) 関連分野との連携
① 燃料高度化
_CIPSは、その程度によっては出力低下を引き起こす可能性が大きい。このため、下記のような連携を図る必要がある。

    • 被ばく低減対策としての水化学の高度化(水化学条件の変更)が腐食生成物の発生・移行・付着挙動、及びCIPSに及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。
    • 燃料高度化(高燃焼度、MOX、最適運転サイクル)及び軽水炉利用高度化(出力向上)が腐食生成物の発生・移行・付着挙動、及びCIPSに及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。

② 高経年化対応

    • SCC及び配管減肉の環境緩和対策としての水化学の高度化(水化学条件の変更)が腐食生成物の発生・移行・付着挙動、及びCIPSに及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。
    • 燃料高度化(高燃焼度、MOX、最適運転サイクル)及び軽水炉利用高度化(出力向上)とSCC及び配管減肉の環境緩和対策としての水化学の高度化(水化学条件の変更)が重畳する場合、腐食生成物の発生・移行・付着挙動、及びCIPSに及ぼす影響について、メカニズム解明、照射試験を含む試験・評価技術分野、モニタリング技術の開発等の分野で連携を行い、効率的かつ合理的に技術開発を行う必要がある。

_図6.2.2-1に燃料性能維持(CIPS対策)に係わる導入シナリオ、表6.2.2-1に技術マップ、図6.2.2-2にロードマップを示す。

参考文献

[6.2.2-1] “NRC Information Notice Effects of CRUD Buildup and Boron Deposition on Power Distribution and Shutdown Margin”, NRC Information Notice Vol.97-85 (1997).
[6.2.2-2] B. Armstrong, J. Bosma, P. Frattini, K. Epperson, P. Kennamore, T. Moser, K. Sheppard, and A. Strasser, “PWR Axial Offset Anomaly (AOA) Guidelines”, EPRI Report TR-110070 (1999).
[6.2.2-3] J. Deshon, D. Hussey, J. Westacott, M. Young, J. Secker, K. Epperson, J. McGurk, and J. Henshaw, “Recent Development of BOA Version 3”, Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems 2010, Paper No. 8.03 (2010).
[6.2.2-4] F. Dacquait, C. Andrieu, M. Berger, J. L. Bretelle, and A. Rocher, “Corrosion Product Transfer in French PWRs during Shutdown”, Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems, Chimie 2002 (2002).
[6.2.2-5] Jiaxin Chen, Chuck Marks, Bernt Bengtsson, John Dingee, Daniel Wells, and Jonas Eskhult, “Characteristics of Fuel CRUD from Ringhals Unit 4 -A Comparison of CRUD Samples from Ultrasonic Fuel Cleaning and Fuel Scrape”, Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems 2014 (2014).
[6.2.2-6] W. Y. Maeng, B. S. Choi, D. K. Min, H. M. Kwon, I. K. Choi, J. W. Yeon, J. I. Kim, H. S. Woo, Y. K. Kim, and J. Y. Park, “The Status of AOA in Korean PWR and a study on the CRUD Deposition on Cladding Surface”, Proc. of Int. Conf. on Water Chemistry of Nuclear Reactor Systems 2008, Paper No. L14-1, Berlin (2008).
[6.2.2-7] H. Kawamura, “Empirical Fuel CRUD Deposition Model in Simulated PWR Primary Water”, Proc. Int. Conf. on Water Chemistry of Nuclear Reactor Systems 2016 (2016).

課題調査票

課題名

CIPS対策による核燃料の性能維持

マイルストーン
及び
目指す姿との関連

短Ⅴ. 保全・運転の負荷軽減・品質向上
⇒自主的安全性向上の効果的・継続的な取り組みにより、保全・運転管理の高度化を図る必要がある。さらに、安全性向上を図りながら、我が国の原子力発電所従事者の被ばく量を低減する取組を行う必要がある。中Ⅱ. 既設プラントの高稼働運転と長期安定運転の実現
⇒電力安定供給性かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期安定運転が必要となる。

概要(内容)

(1) CIPS発生メカニズムの解明
_通常運転時の水質変化がCIPSに影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、CIPSに及ぼす水質変更の影響を、機構面から明らかにする。(2) CIPS対策技術の開発
_通常運転時の水質変化がCIPSに影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、CIPS対策を検討する。

(3) データや評価技術の検証
_通常運転時の水質変化がCIPSに影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることがないよう、CIPSに係わるデータや評価技術を検証する。

(4) CIPSに係わる規格基準の策定
_通常運転時の水質変化がCIPSに影響を与え、その結果、被覆管の破損等が生じ、異常状態や事故に至ることを防ぐことを目的とし、標準化に適した水化学管理技術を学会指針に取り入れる。また、燃料被覆管・部材の健全性に係わる最新知見に基づき、必要に応じ水化学管理指針の管理項目等の設定値を見直す。

導入シナリオとの関連

水化学によるCIPS対策による核燃料の性能維持

課題とする根拠
(問題点の所在)

水化学RMと深層防護との関連付けの検討結果を参照

現状分析

(1) CIPS発生メカニズムの解明
_CIPSに及ぼす水質変更の影響に関する統一的な機構論は明確になっていない。(2) CIPS対策技術の開発
_CIPS発生メカニズムに立脚した水化学対策技術は確立されていない。

(3) データや評価技術の検証
_CIPSと水化学との相関に係わるデータの整備や評価技術は確立されていない。

(4) CIPSに係わる規格基準の策定
_通常運転時の水質変化が燃料被覆管のクラッド付着に及ぼす影響に関する最新知見について、日本原子力学会指針「PWR一次冷却系水化学管理指針」の解説に規定している。

期待される効果
(成果の反映先)

    • 原子力発電所の高稼働運転における核燃料の健全性維持及び環境負荷軽減が可能となる。
    • 燃料等の炉心構成要素の高度化や、原子炉の運転条件が見直された場合においても、運転上の制限を遵守し安全余裕を確保した状態で原子炉の運転が可能となる。

実施にあたっての問題点

課題全体の共通問題として下記がある。

    • 原子力安全とも大きく関連することから、課題解決には緊急性を要する。
    • 研究開発のための資金確保が必要である。

必要な人材基盤

(1)人材育成が求められる分野

    • 水化学、状態監視技術

(2)人材基盤に関する現状分析

    • 事業者においては、現在導入している状態監視技術に関する知識・技能を有した人材の育成が行なわれてきた。
    • メーカでは原子力設備の海外輸出等を通じて、必要な技術開発にかかる人材の育成を行っている。
    • 大学等では、共同研究やインターンシップ等により、人材育成や人的交流を図ってきた。
    • 水化学技術は、原子力発電所の保全のみならず、リスクの概念を併用すれば、安全の確保の基本となる技術の一つであり、必要な人材基盤を継続して確保していくことが重要である。今後も人材基盤を維持していくためには、大学等の教育段階から優秀な人材を集め、かつ、人材を計画的に育成していくとともに、実際に炉心設計、運用管理の経験を積んでいくことが必要である。
    • 海外の実用化技術の反映にとどまらず、その改良をもって、更なる原子力安全に役立つ運用管理技術を国際的に展開できる人材を育成し、活躍してもらうことが必要。
    • 特に海外で豊富な実績を有する解析手法等については、その迅速かつ円滑な導入を促す仕組みの充実(国際共同研究、国際会議、人的交流等の活性化等)。

(3)課題

    • 必要とされる人材規模は、原子力発電に関する国の方針に依存し、これに対応して、計画的かつ継続的な人材確保が必要である。
    • 1F事故後の原子力プラントの長期停止により、実際に経験を積む場が損なわれている。
    • 優秀な人材を惹きつけるという意味において、1F事故とそれに続く原子力プラントの長期停止は、若い世代の原子力離れを招いている。

他課題との相関

    • 「炉心・熱水力設計評価技術の高度化」(ロードマップ)
    • S111_d32:状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
    • M107_d38 建屋構造・材料の高度化
    • S111M107_d36:高経年化評価手法・対策技術の高度化
    • M107_d25:運転性能の高度化(事象進展抑制、停止機能、L/F等)
    • S103_b07:廃棄物長期保管に向けた健全性評価技術、管理技術の高度化
    • M106_c01:計測技術・解析技術の高度化

実施時期・期間

中期(2030年)

実施機関/資金担当
<考え方>

産業界/産業界
_CIPS発生メカニズムの解明、CIPS対策技術の開発、データや評価技術の検証等に必要な技術開発を実施
<考え方>

    • 電気事業者は、事業主体としてプラント要件を取り纏めるとともに、プラントへの適用性評価を行う。
    • メーカは、プラント設計を熟知していることから、具体的な設計とプラントに合った技術開発を行うとともに、電に事業者が実施するプラントへの適用性評価を支援する。
    • 研究機関は、技術開発に必要な要素技術を開発する。
    • 大学は、技術開発に必要な要素技術を開発する。
    • 実施主体が資金担当となることが適当と考える。

原子力規制委員会/原子力規制委員会
(必要に応じ、規制の枠組みの整備、技術評価)
<考え方>

    • 電気事業者は、新規制基準及び軽水炉安全技術・人材ロードマップに則り、事業主体として安全性向上に努める。
    • 電気事業者は、事業主体として保全の信頼性向上に努める。
    • メーカは、必要な技術開発に努める。
    • 原子力規制委員会は、電気事業者のニーズを踏まえて規制基準及び導入の枠組みを定め、技術評価を行う。
    • 実施主体が資金担当となることが適当と考える
    • 原子力規制委員会が規制の観点からが主体となる事項について資金担当となることが適切。

産業界・学協会/産業界
_対CIPSに係わる規格基準の策定

    • 産業界(電気事業者、メーカ)が主体となって核燃料の健全性維持に必要な水化学技術の高度化を図る。
    • 学協会は、核燃料の健全性維持及び付随して必要となる水化学技術に係わる規格基準等について検討を行う。
    • 原子力規制委員会は、核燃料の健全性維持及び付随して必要となる水化学技術に係わる規格基準を整備し、技術評価及び認可を行う。
その他

 

6.2 燃料の高信頼化

_2011年3月に発生した1F事故の教訓を踏まえ、研究開発ロードマップの策定の際には、深層防護の考え方に基づき、異常・故障の発生防止と事故への拡大防止、事故の影響緩和、設計基準を超す事故への施設内対策等、外部環境への影響を考慮したレベルに応じ、原子力発電所の安全性向上に向けた技術を開発していくこととなった。
_2018年現在、PWRを中心に再稼働が進んできたが、核燃料分野においては、1F事故を契機に、FP放出低減/温度上昇抑制ペレットの開発と通常時材料劣化低減被覆管の開発が加速されるとともに、事故時(LOCA、Post-DNB)高温酸化劣化抑制部材(被覆管/集合体)や事故耐性燃料(Accident Tolerant Fuel、以下ATF)の開発と実機への早期導入が求められるようになった。
_新たな水化学技術を導入する際には、現行燃料の被覆管や部材の腐食対策及び水素吸収特性に及ぼす水化学の影響の有無を事前に評価しておく必要がある。さらに、上記の改良型燃料の導入に際しては、被覆管や部材の材質変更に及ぼす水化学の影響を事前に評価しておく必要がある。加えて、被覆管表面へのクラッド付着に起因するCIPS(Crud Induced Power Shift)あるいはAOA(Axial Offset Anomalies)、以下、CIPSと表記)に対しても、現行及び改良型の燃料被覆管を対象に、水化学の影響の有無を事前に評価しておく必要がある。
_本節では、核燃料に対する水化学の影響が比較的大きいと考えられる被覆管・部材の腐食/水素吸収対策及び燃料性能維持(CIPS対策)を取り上げる。

6.1.4 状態基準保全の支援

_将来、炉内や配管の健全性モニタリングが可能になれば、長期にわたる経年劣化の予測評価精度の向上や状態基準保全の充実が期待される。SCCやFAC等の経年劣化事象について材料・応力・環境面から多面的に計測・評価可能なモニタリング技術を開発・適用することは今後目標とすべき研究課題である。
_今回の改訂に当たって、1F事故を踏まえて、深層防護各レベルにおける状態基準保全の支援に係わる研究の係わりを検討し、レベル1から4のいずれにおいても貢献できる課題のあることがわかった。すなわち、プラント構成材料の経年劣化状態を長期にわたり高精度に監視し、損傷リスクに応じた適切な保全を行うことにより設備の信頼性を向上させ、事故発生リスクを低減すること、一次冷却材の水質異常兆候を早期に検出し、プラントの運転管理への適切な判断材料を提供すること、また、格納容器内雰囲気や原子沪水の状況のモニタリング技術高度化を化学の観点から支援することにより、事故発生防止及び拡大防止に貢献していくことができる。
状態基準保全の支援に関する現状、研究方針と課題、及び、産官学の役割分担について以下に述べる。

(A) 現状分析

(1) 環境モニタリング技術の高度化
_「原子力発電施設に対する検査制度の改善について(案)2006年9月原子力安全保安院」や検査のあり方検討会において、高経年化対策の充実のために状態基準保全や運転中を含めた新しい監視・評価技術の導入が有効であるとされ、新検査制度では、回転機器の劣化進展把握のため、振動分析等運転中の状態監視が導入された。米国では既にオンラインメンテナンスの導入が進められ、また、EPRIではタービンに対し、ヘルスマネジメントの概念を導入・活用している。
_震災以後、軽水炉プラントの事故発生リスク低減が、より一層求められている。状態基準保全の支援技術は、運転トラブルの防止、経年劣化対策の確かな実施及び作業環境の改善の観点から、重要度を増している。また、緊急時におけるプラント状態把握のため、キーとなるプラントパラメーターのオンライン収集と状態把握が求められている。
_水質のモニタリング技術は、これまでにも多くの研究開発が行われてきており、プラント水質の維持管理に貢献してきたが、今後、さらに重要性が増すと考えられる。近年、AI技術が飛躍的に発展してきており、これらを導入することでモニタリング技術の更なる高度化が期待される。一方で、原子炉構成材料の経年劣化に関する状態基準保全技術の開発・適用は進んでおらず、炉内各部の腐食環境をモニタし、あるいは、異常予兆を早期に察知し対処する水質管理を確立するには、更なる研究開発が必要である。2011年にBWRプラントにおいて復水器から炉内に大量の海水が流入するトラブルが発生したことから、水質管理システム高度化に当たっては、急激な水質変化にも対応できるようにすることが必要である。
_1F事故においては、原子炉水位計や格納容器雰囲気モニタが十分機能せず、事故の対応に影響を与えた。過酷事故時の原子炉や格納容器内の状況を把握できるモニタリング技術の高度化が求められており、化学の立場からの支援を考える必要がある。

(2) 機材劣化評価手法
_現行は健全性評価等に基づいた時間計画保全(TBM)を中心とした保全となっており、例えば、SCCの点検頻度は過度の保守性に基づいている可能性がある。水素注入等のSCC環境緩和技術を適用した効果を反映した保全を行うことについてのニーズは大きく、炉内水質環境のモニタリング技術確立は重要な課題である。
_これまで、炉内環境のモニタは限られた部位でのみ実施されており、炉内全体については行われていない。炉内各部位の評価は主としてモデル解析を通じ評価している。腐食環境の可視化はこれまで実施されていない。
_プラント構成材の状態基準保全技術の開発にあたっては、水質以外の劣化要因(材料、応力、流況その他劣化モードに応じた他のパラメータ)の影響評価及び実機条件の把握等の課題もある。このため、これら他の劣化要因を含めた精度の高い経年劣化評価技術の開発が状態基準保全技術の開発に不可欠である。実機腐食環境の詳細評価に繋がる研究として、腐食環境評価法の高度化に係わる研究が国の高経年化対策事業として実施されたが、その後継続されていない状況にあり、再構築が必要である。

(3)状態基準保全手法
_状態基準保全に係わる研究事例はまだ少なく、水素注入等のSCC環境緩和技術を適用した効果を反映した保全を行うことを目指して、近年、プラント運転中の炉内ヘルスモニタリングの一つとして炉内腐食電位測定が計画されていたが、震災の影響で中止になっている。今後、研究開発の再構築が必要である。また、実機腐食環境の詳細評価に繋がる研究として、国の事業として腐食環境評価法の高度化に係わる研究が実施された。

(B)研究方針と課題
_SCCやFACに関する水質の影響評価及び実機水質モニタリング/評価技術の開発を推進する。ただし、水化学技術単独では状態基準保全を実現することは難しい。人材RMにおいて、状態監視・モニタリング技術や劣化評価技術高度化の研究課題が取り上げられており、これらと状態基準保全技術開発をリンクさせて研究を進めていく必要がある。
_状態基準保全(及びオンラインメンテナンス)の実現により、損傷リスクに応じた適切な保全方法の展開と合理的な点検が可能となり、経年劣化対策の確かな実施を支えることができる。同時に、適切な情報発信の組み合わせによって見える化に資することができ、安心・安全意識の醸成も期待される。
_このためには、以下に示す技術開発や高度化が必要と考えられる。同時に、これらの技術を保全技術に展開していくためのスキームもあわせて考えていく必要がある。そのためには、安全実績指数(PI)と結びつけて考えることも重要である。

(1)環境モニタリング技術の高度化
構成材料の腐食損傷は、炉水環境が一つの重要な要因となっており、炉内各部位での環境パラメータ(酸化種濃度、腐食電位等)を評価しておくことが必要である。原子炉内各部の水質環境をモニタする方法、及びモニタした結果を可視化し全体を鳥瞰できるような手法を検討する。可視化手法は、実測値のみならずモデル解析結果の可視化も含める。さらに、これらの実測、解析結果の評価を実施し、その精度の確認とその向上を図る。
_プラントの水質状況を迅速且つ的確に把握することによりプラント設備の健全性を評価することが可能になる。水質管理システムに関連しては、これまでエキスパートシステム等、異常予兆診断技術の開発が行われ、一部プラントに導入されている。状態基準保全の支援に用いるためには、多岐にわたるプラントの運転/水質情報を適切な処理や解析を行い、設備の異常兆候等を早期検知して予兆段階で速やかに修復できる高度化された水質管理システムを構築する必要がある。これにより水質面からプラントの状態基準保全を支援することが可能になる。近年、飛躍的に発展しているAI技術等を導入することにより、モニタリング技術の更なる高度化を図る。また、海水リーク等圧力バウンダリーの損傷に伴う急激な水質異常にも対応できるシステムを検討する。
_現状、サンプリングラインを用いた試料採取とその分析結果から炉内水質監視を行っているが、短寿命の放射線分解生成物濃度の把握は困難で、ラジオリシスモデルによる解析により炉水環境を精度良く評価するには至っていない。また、実機構成材料のSCCモニタリング手法も確立していない。オンラインモニタリング技術の確立が望まれる。
_現状の分析機器の信頼性から一旦冷却した水を分析しているため、対象物の形態や状態変化が起こっていることも考えられる。また、一般にサンプリングを介する為に情報の平均化や時間遅れが生じていると考えられる。これまで高温水モニタ技術はIAEA国際共同研究プロジェクト等で実施され、実機へ適用されているものもある。プラントの水質状況を迅速且つ的確に把握することによりプラント設備の健全性を評価することが可能になるため、オンラインモニタによる連続的な系統内の微量不純物・金属・核種のモニタリング技術、高温サンプリングによる放射性腐食生成物(CP)、CP形態等のモニタリング技術を確立し、水質面から状態基準保全を支援する必要がある。また、オンラインモニタリング化を進めることは、現在行われている多くの手動による分析が低減し、作業者の負担低減にもつながる。
_多岐にわたるプラントの運転/水質情報を適切に処理や解析を行い、設備の異常兆候等を早期検知して予兆段階で速やかに修復するできる水質管理システムを構築する。また、一次冷却水中の核分裂生成物濃度やオフガス系等の放射線線量率を監視することにより、燃料破損を早期に検出し、迅速かつ的確な対応が取れるモニタリング技術の高度化を図る。炉心損傷事故の発生時における格納容器雰囲気(放射線線量率、ガス濃度等)モニタや原子炉水位計等の計装機器の機能強化により、損傷状況を的確に把握できるモニタリング技術の高度化に、化学の面から支援する。事故時のヨウ素挙動研究の成果を取り入れつつ、監視技術の高度化を図っていく。

(2)実機材劣化評価手法
現在、BWRでは、炉水環境を緩和する種々の方策が開発されつつあり、一部は実機に適用されている。これらの手法の有効性を評価するために、研究炉を用いた検討が行われるが、種々の制約から実機との対応という点で課題がある。これを解決する方策として実機環境で曝露された材料を直接活用することが考えられる。さらに、このような評価手法が確立できれば、運転中の実プラントの健全性モニタとして適用していくことが可能となる。
_一方、PWSCC発生試験では、試験温度を高めに設定する等、加速試験が一般的に行われ、この試験データに基づきSCCの評価・実機材料の寿命評価を行うことがある。そのため、実機により近い条件を模擬したSCC試験データに基づく評価精度の向上が望ましい。
_状態基準保全の充実においてSCCの発生・進展/抑制状況を直接または間接的にモニタリングする、または評価する手法の確立が望まれる。材料ならびに応力の要素は概ね製造・施工時に決まりやすい一方で、環境の効果は運転条件に応じて変化する要素であるから、腐食環境のモニタリング評価もこの点で状態基準保全の充実において重要な要素であると考えられる。
_現状の維持規格ベースの亀裂進展評価では過度に保守的な傾向があると考えられており、きめ細かなモニタリングあるいは評価手法に基づいた状態基準保全を導入することにより、保全周期の適正化が図ることができる。

(3)状態基準保全手法
プラント状態監視技術の適用により、プラントの安全・安定な運転が図られる。つまり、状態基準保全やオンラインメンテナンスの実現により、損傷リスクに応じた適切な保全方法の展開と合理的な点検が可能となり、また、適切な水質管理により燃料や構造材の劣化が抑制されることにより、より一層の安全性向上が図られる。

(C)産官学の役割分担の考え方
①産業界の役割

    • 実機腐食環境の詳細評価
    • モニタリング技術の高度化
    • 実機材劣化評価手法の開発と既存技術の高度化
    • 状態基準保全手法の開発

②国・官界の役割

    • 安全規制に必要な技術基盤の推進
    • 規制の高度化、合理化

③学術界の役割

    • 基礎データの蓄積、基盤技術の開発
    • 腐食環境シミュレーション技術の高度化
    • 実機材料劣化モデリング/シミュレーション
    • 人材育成

④学協会の役割

    • 規格基準・民間標準策定
    • 国内外への情報発信
    • 人的交流と育成

⑤産官学の連携

    • 状態基準保全技術開発の効率的推進
    • 保全プログラム高度化への反映
    • 産官学間の人材交流

(D)関連分野との連携
_SCCの抑制に関する課題のうち、「実機腐食環境評価及び環境緩和効果の実証」「実機腐食環境モニタリング技術及びSCCモニタリング/評価技術の開発」に関連する。また、水化学共通基盤のうち、「腐食環境評価技術」及び「腐食メカニズム」に係わる課題と関連する。これらとは、連携を図って研究を進める必要がある。
_人材RMについても、「状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化」及び「高経年化評価手法・対策技術の高度化」が謳われており、連携が必要である。

図6.1.4-1に導入シナリオ、表6.1.4-1に技術マップ、図6.1.4-2にロードマップを示す。

 

課題調査票

課題名 状態基準保全の支援

マイルストーン
及び
目指す姿との関連

短期 V.保全・運転の負荷軽減・品質向上
⇒保全・運転における負荷軽減により作業品質を向上させ、ヒューマンエラー防止等へ繋げる取組みの継続がなされる必要がある。中期 II.既設プラントの高稼働運転と長期安定運転の実現
⇒安定かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期間運転が必要となる。

長期 I. プラント全体のリスク極小化
⇒事故低減に係わる革新的技術がなされるために必要がある。

概要(内容)

(1) 環境モニタリング技術・水質管理システムの高度化
(1-1) 異常予兆に迅速に対応できる水質管理システム構築
プラントの水質状況を迅速且つ的確に把握することによりプラント設備の健全性を評価することを可能とする。多岐にわたるプラントの運転/水質情報を適切な処理や解析を行い、設備の異常兆候等を早期検知して予兆段階で速やかに修復するできる水質管理システムを構築することにより、材料損傷リスクを低減し、水質面からプラントの状態基準保全を支援する。海水リーク等圧力バウンダリーの損傷に伴う急激な水質異常にも対応できるシステムを検討する。
(1-2) オンラインモニタリングの高度化
_多岐にわたるプラントの運転/水質情報を適切な処理や解析を行い、設備の異常兆候等を早期検知して予兆段階で速やかに修復するできる水質管理システムを構築する。また、一次冷却水中の核分裂生成物濃度やオフガス系等の放射線線量率を監視することにより、燃料破損を早期に検出し、迅速かつ的確な対応が取れるモニタリング技術の高度化を図る。炉心損傷事故の発生時における格納容器雰囲気(放射線線量率、ガス濃度等)モニタや原子炉水位計等炉内状態把握のための計装機器の機能強化により、損傷状況を的確に把握できるモニタリング技術の高度化に化学の面から支援する。
(1-3) プラントの腐食環境モニタリングと材料損傷リスクの可視化
_プラント各部の腐食環境をモニタする方法、及びモニタした結果に基づいて材料損傷リスクを可視化し全体を鳥瞰できる手法を検討する。可視化は、実測値及びモデル解析結果とその評価結果も対象とする。
_二次系系統各部での鉄濃度、主に復水系での腐食電位やORP等の運転中連続モニタリングと配管等からの鉄溶出量との相関把握、及び水質変更時の影響を把握する。また、従来の還元性環境に対しヒドラジン無添加、或いは微量酸素注入による鉄低減効果の知見を充実させる。(2) 実機材劣化評価手法の開発
(2-1) 環境加速
_炉水環境が原子炉構成材料の腐食損傷に与える影響を実機に装着した構成材料を用いることで直接評価する方策を検討する。特に、強酸化環境による腐食加速と環境改善策を適用した場合の緩和効果を直接比較評価できる手法の構築を目指す。
(2-2) 材料劣化に及ぼす環境加速/緩和効果の実機構成材での評価方策(PWR/BWR共通)
実機環境に曝露された材料を直接活用して、材料劣化に及ぼす環境影響評価手法を開発する。運転中の実プラントの健全性モニタとしての適用を検討する。
(2-3) 材料劣化に及ぼす環境加速/緩和効果の実機構成材での評価方策(PWR)
_実機で長時間経過後に発生するSCCを短時間に実験室試験で再現できる加速試験方法を開発し、実験室試験を用いた精度良い実機SCC評価方法を確立する。

(3) 状態基準保全手法の開発 - ヘルスマネジメントのための状態監視技術の開発と適用 –
_プラント状態監視技術を開発・適用し、プラント状態基準保全技術に基づく経年劣化管理による損傷リスクに応じた適切な保全方法の構築を図る。

具体的な項目

(1) 環境モニタリング技術・水質管理システムの高度化
(2) 実機材劣化評価手法の開発
(3) 状態基準保全手法の開発

導入シナリオとの関連

水化学によるプラント状態基準保全の支援

課題とする根拠
(問題点の所在)

_水化学による状態基準保全の支援技術の適用により、運転トラブルの防止、経年劣化対策の確かな実施及び作業環境の改善を通じて、事故発生リスクが低減する。一次冷却材の水質異常兆候を早期に検出し、プラントの運転管理への適切な判断材料が提供される。また、格納容器内雰囲気や炉水状況のモニタリング技術高度化を化学の観点から支援することにより、事故発生防止及び拡大防止に貢献できる。

現状分析

(1)    環境モニタリング技術・水質管理システムの高度化
_炉水水質のモニタリングや水質診断技術に関してはこれまでに多くの研究開発が行われ、プラントの水質維持に貢献してきた。一方で、原子炉構成材料の経年劣化に関する状態基準保全技術の開発・適用方策進んでおらず、炉内各部の腐食環境をモニタし、あるいは、異常予兆を早期に察知し対処する水質管理を確立するには、更なる研究開発が必要である。
_2011年に、BWRプラント復水器から炉内に大量の海水が流入するトラブルが発生した。水質管理システム高度化に当たっては、急激な水質変化にも対応できるようにすることが必要である。
_これまで、炉内環境のモニタは限られた部位でのみ実施されており、炉内全体については行われていない。炉内各部位の評価は主としてモデル解析を通じ評価している。腐食環境の可視化はこれまで実施されていない。
_1F事故においては、原子炉水位計や格納容器雰囲気モニタが十分機能せず、事故の対応に影響を与えた。過酷事故時の原子炉や格納容器内の状況を把握できるモニタリング技術の高度化が求められており、化学の立場からの支援を考える必要がある。(2)    実機材劣化評価手法の開発
_プラント構成材の状態基準保全技術の開発にあたっては、実機水質モニタリング/評価技術を高度化するとともに、SCCやFACによる材料の劣化・損傷に及ぼす水質影響を含めた精度の高い経年劣化評価技術の開発が不可欠である。実機腐食環境の詳細評価に繋がる研究として、腐食環境評価法の高度化に係わる研究が国の高経年化対策事業として実施されたが、継続されていない状況であり、再構築が必要である。

(3)    状態基準保全手法の開発
_状態基準保全に繋がる研究開発の実施例は少ないが、水素注入等のSCC環境緩和技術を適用した効果を反映した保全を行うことを目指して、近年、プラント運転中の炉内ヘルスモニタリングの一つとして炉内腐食電位測定が計画されたが、震災の影響で中止になっている。今後、研究開発の再構築が必要である。保全支援のための技術開発を推進していくには、水化学技術単独では難しく、高経年化対応等の関連研究等と連携していく必要がある。

期待される効果
(成果の反映先)

    • 状態基準保全の実現により、損傷リスクに対する適切な保全方法の展開により合理的な点検が実現
    • 水質等の異常予兆を早期に察知することにより、プラントの安定・安全な運転に寄与
    • 適切な情報発信の組み合わせによって見える化に資することができ、安心・安全意識が醸成

実施にあたっての課題

    • 実機炉内データの取得が成否の鍵となるが、多額の研究開発費が必要
    • 総合的技術であるため、多くの関係者の連携・協働が必要

必要な人材基盤

(1)    人材育成が求められる分野
_状態基準保全の支援技術の研究開発を推進していくためには、以下の分野に精通した人材が求められる。
水質管理・診断、材料劣化評価、設備・機器の状態監視、オンラインメンテナンス、可視化(2)    人材基盤に関する現状分析
_これらの分野に関する研究開発は、従来、水質管理や保全に係わる研究開発はメーカと電力会社をはじめ、研究機関、大学で行われてきた。

(3)    課題
_長い経験が必要な分野であり、熟練には時間がかかる。また、今後人材の不足が予想されることから、長期的視野に立った育成計画が必要である。非原子力の分野との連携・協働も有効と考えられる。

他課題との相関

人材RM
【S111_d32】状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
【S111M107_d36】高経年化評価手法・対策技術の高度化

実施時期・期間

短~長期

実施機関/資金担当
<考え方>

産業界、学術界/産業界

    • 異常予兆に迅速に対応できる水質管理システム構築による状態基準保全の支援
    • オンラインモニタの高度化による状態基準保全支援
    • 材料劣化に及ぼす環境加速/緩和効果の実機構成材での評価方策

<考え方>

    • 産業界(電気事業者、メーカ)は、実施主体として、安全性・信頼性・経済性の確保向上を目的とした開発研究及び基盤整備を行う。
    • 安全基盤研究の推進・検証を行う。
    • 実施主体が資金担当となることが適当と考える。

産業界/産業界

    • プラントの腐食環境モニタリングと材料損傷リスクの可視化

<考え方>

    • 産業界(電気事業者、メーカ)は、実施主体として、安全性・信頼性・経済性の確保向上を目的とした開発研究及び基盤整備を行う。
    • 実施主体が資金担当となることが適当と考える。

産業界、官界、学術界/産業界、官界

    • ヘルスマネジメントのための状態監視技術の開発と適用

<考え方>

    • 産業界(電気事業者、メーカ)は、実施主体として、安全性・信頼性・経済性の確保向上を目的とした開発研究及び基盤整備を行う。
    • 学術界は、安全基盤研究の推進・検証を行う。
    • 官界は、安全規制につながる安全研究と安全基盤研究の推進を行う。
    • 実施主体が資金担当となることが適当と考える。
その他

 

6.1.3 PWR 蒸気発生器長期信頼性確保

_蒸気発生器(以下SG)長期健全性確保のための水質管理は、SG伝熱管腐食損傷の発生による一次系冷却材の二次系統、環境への放射能放出を防止することを目的としており、プラント安全性維持に必要な深層防護レベル1「異常・故障の発生防止」に該当する。
_また、一次系冷却材の漏洩による放射能の環境放出拡大防止対策は、一、二次系の水質管理技術の範囲外となり、SG伝熱管健全性確保に対する影響が大きい、復水器冷却水漏えい等の水質劣化に対しては、水質監視設備、水質浄化系設備の増強等、設備側の保全対策が確立されているため、レベル2「異常・故障の拡大防止」、レベル3「事故の影響緩和」、レベル4「設計基準を超す事故への施設内対策」に該当しない。
_なお、スケール付着影響緩和技術の開発、実機適用に際しては、SG伝熱性能の維持、回復についても考慮する。

6.1.3.1 蒸気発生器伝熱管の健全性確保
_国内PWRでは、1990年代後半から2000年代初頭にかけて、MA600合金製伝熱管を採用した旧型のSG伝熱管の腐食損傷が顕在化し、種々の水質改善対策が適用されるとともに、より耐食性の高いTT600合金、さらにはTT690合金製伝熱管を採用した新型SGに取替えられた結果、現状、SG二次側でSGの信頼性にかかわる腐食損傷は顕在化していない。
_SG伝熱管の二次側腐食損傷として主に経験されてきたIGA(Inter Granular Attack 粒界割れ)に対し、TT690合金は従来の600合金から材料耐性の向上が図られているが、不純物の介在によりクレビス環境が大きく酸、あるいはアルカリ側に偏った環境下で、酸化銅等の酸化剤の共存により腐食電位が上昇した場合は、600合金と同様にIGA発生感受性を有しており、クレビス環境の確認、環境緩和対策の開発を継続していくことは重要である。
_SG伝熱管の健全性を確保していくためには、設計・建設段階における材料・形状等の選択、製作・施工方法の管理、運転開始後における適切な検査・補修を行うことはもちろんのこと、SGに持ち込まれる不純物管理を適切に行うとともに、クレビス環境が良好に維持されていることを確認し、クレビス環境変動時には、効果的なクレビス環境緩和対策を施すことにより、SG伝熱管損傷の発生、進展を防止することが重要である。
_これらSG伝熱管の健全性確保に関する、現状、研究方針と課題、及び、産官学の役割分担について以下に述べる。

(A) 現状分析

(1) SG伝熱管腐食メカニズムの解明
_SGは管外蒸発型の熱交換器であり、SG伝熱管と管支持板間に物理的に形成されるクレビス、あるいは給水から持ち込まれた鉄が管板上に堆積、固着した下部に形成されるクレビスにおいて乾湿交番(Dry & Wet)環境が生じ、SG器内水に含まれる微量の不純物が高濃度に濃縮する。不純物バランスの偏りにより、クレビス内環境が強アルカリ性、あるいは強酸性となり、かつ酸化剤の共存による腐食電位の上昇がIGAの発生原因となることを確認し、SGへの不純物持込み防止、系統内の還元性環境強化等水質改善対策を適用してきた [6.1.3.1][6.1.3.2] [6.1.3.4] [6.1.3.6] [6.1.3.7]
_最近のPWR二次系水質管理実績によると、SG伝熱管の損傷を経験した時期に比べて不純物濃度は大幅に低減され、さらに、改良伝熱管であるTT690合金の適用による材料耐性の向上により、SG伝熱管損傷の発生リスクは大きく低減しているものと判断している。
_一方、海外では鉛等の微量金属が関与すると想定されるSG伝熱管損傷が600合金で認められており[6.1.3.5]、国内プラント水質実績から、鉛等微量金属成分が確認されている。しかしながら、これら微量金属のクレビスへの濃縮挙動、SG伝熱管腐食への影響、供給系統の特定ができておらず、管理手法、方針の設定ができていない。

(2) SGクレビス環境評価手法の開発・高度化
_SG二次側クレビス環境の評価に対し、高温電極、模擬濃縮部等を用いたモデルボイラー試験による適用性検討が行われてきた[6.1.3.8]が、これら直接監視評価技術は、設備が大がかりとなる、連続計測が困難である等の課題があり、実用化に至っていない。
_このため、現状はプラント運転中のクレビス環境評価として、SGバルク水質からの計算による評価を適用している[6.1.3.9]

(3) SG二次側クレビス酸性環境緩和技術の開発
_SG伝熱管損傷防止を目的として取り組んできた清浄度管理(使用副資材管理、機器洗浄等)の徹底により、プラント起動時、定常運転時の不純物のうち、ナトリウム、塩化物イオンの濃度は大幅に低減された。
_一方で、復水脱塩設備カチオン交換樹脂の劣化生成物であるPSS(ポリスチレンスルホン酸)に起因すると想定される硫酸イオンの影響が相対的に大きくなり、夏期の復水温度上昇時等にSGクレビス環境が酸性側に偏るケースが増え、酸性側環境での伝熱管損傷緩和対策の必要性が高まっている[6.1.3.1][6.1.3.6]
_硫酸イオン持込抑制対策として、復水脱塩設備カチオン樹脂劣化防止、溶出低減対策技術の導入が進められており、一定の導入効果が得られている。しかしながら、一部プラントで運転中に硫酸イオンのスパイク的な増加が認められる例があり、一方では、高pH処理の適用に伴う復水脱塩設備の部分通水、バイパス運用等浄化効率が低下するケースもある。また、酸性クレビス環境緩和対策として、緩衝剤の基礎検討を開始しているが、化学物性に基づく机上検討の段階である。

(4) SGクレビス濃縮環境緩和技術の開発
_海外では、管板上のハードスラッジ堆積部においてデンティグや孔食、SCCが顕在化している。化学洗浄も適用されているが、クレビス固着スケールの除去効果は十分ではなく、廃液処理にかかる費用及び労力も大きい。国内ではスラッジランシングによる管板上固着スケールの除去を行うとともに、給水鉄濃度の低減による管板上スラッジ堆積抑制に取り組んでおり、比較的良好なSG環境が達成されている。また、一部プラントではASCA(Advanced Scale Conditioning Agent)洗浄による固着スケール脆弱化に対する試行が行われている[6.1.3.10]が、その効果は今後確認の必要があり、長期健全性維持の観点からは更なる技術革新が必要と考えられる。

(5) スケール付着抑制技術の適用影響評価
_スケール付着抑制技術として、海外でスケール分散剤[6.1.3.1]、フィルムフォーミング・アミン(FFA)等の試験運用が開始されつつある[6.1.3.11]が、これら技術の国内プラント適用の必要性、適合性に関する見極めを早期に行うことが重要である。なお、FFAについては、フィルムフォーミング・プロダクト(FFP)と表現することがあるが、ここではFFAと称する。

(6) 水質管理技術の適合性検証
_SGクレビス環境は試験による再現が困難であり、長期健全性への水化学の影響を把握することは容易ではない。また、耐SCC改良材であるTT690合金に対しても、SCC進展の感受性があることが報告されている。これらの状況から、長期の水化学管理技術適用の妥当性を確認するために、廃炉活用研究として実機材の抜管調査等による適合性検証が重要と考えられる。

(7) 代替ヒドラジン技術の導入
_主にPWRプラントの二次系水処理に使用している脱酸素剤としてのヒドラジンは、取扱い上の危険性が指摘されており、1997年に制定されたPRTR法(※1)により管理対象物質として使用状況の公開が義務付けられているほか、SAICM(※2)により将来的に、ヒドラジンを使用できなくなる可能性が高く、ヒドラジンを使用しない水処理の開発を行っていく必要がある。

※1:PRTR:環境汚染物質排出移動登録の略で、有害物質移動量の届出制度
※2:SAICM:国際的な化学物質管理のための戦略的アプローチ

(B) 研究方針と実施にあたっての問題点
_SGの長期信頼性を確保し、プラントの公益性を高めるためには、上述した現状課題に対し、以下に示すような水化学技術の高度化、新技術の開発に継続的に取り組んでいくことが重要である。

(1) SG伝熱管腐食メカニズムの解明
_SG伝熱管材料の腐食メカニズムについては、酸性、アルカリ性環境下で酸化剤の共存により発生することが確認され、SGへの不純物、酸化剤持込み防止による管理手法を確立、提案、実機適用することにより、SG二次側伝熱管損傷は大幅に低減した。
_しかしながら、鉛等一部の微量金属成分が関与する腐食メカニズム、クレビスへの濃縮挙動、及び持ち込み源、形態は明確になっておらず、これらを明確化することにより、SGクレビス環境緩和のための管理指針を確立するとともに、プラント設計、建設、補修、点検で鉛を含む材料、資材を使用制限するための方策を検討する。

(2) SGクレビス環境評価手法の開発・高度化
_現状SGのクレビス環境評価は、SG器内水不純物濃度から濃縮部の環境を推定するクレビス濃縮評価コードを構築し、本計算コードを介して評価を行っている。
_一方、クレビス環境を直接、逐次監視する技術の開発は、クレビスへの不純物の濃縮、腐食メカニズムの解明、並びに環境緩和技術の開発においても重要であり、この観点からin-situ分析技術等最新の分析評価技術の開発による検証に最重要課題として取り組んでいく。

(3) SG二次側クレビス酸性環境緩和技術の開発
_クレビス酸性化環境緩和を目的とし、硫酸イオン発生源の一因と想定しているPSSの持ち込み低減のため、復水脱塩設備カチオン樹脂への耐酸化劣化樹脂の適用、復水脱塩設備通水率の低減等の対策が進められているが、依然としてクレビス環境が酸性化する傾向は認められている。
_SGの硫酸イオン低減のためには、復水脱塩設備カチオン樹脂の更なる劣化防止、溶出抑制等新たな技術の開発に加えて、復水脱塩設備の運用方法(コンデミ部分通水、バイパス、SGブローダウン選択浄化等)を含む二次系浄化システム全体の最適化検討を行う。
_また、酸性クレビス環境に対して有効な中和効果を有する緩衝剤として、Ca、Mg等アルカリ土類金属添加が検討されたが、これら化学成分の塩類は当該環境での溶解度が小さく、クレビスに析出・付着してクレビス容積を減少させ、濃縮倍率を増加させる懸念がある。このため、クレビスに析出・付着してクレビス容積を減少させない、非析出型の緩衝剤を開発し、中和効果の確認、二次系系統構成材料への影響確認を行い、実機適用を推進する。

(4) SGクレビス濃縮環境緩和技術の開発
_SG器内クレビスの濃縮低減による腐食環境緩和を目的とし、SG二次側構成材料健全性確保、廃液環境負荷低減を考慮し、スケール除去効果の高い洗浄技術の開発を行う。

(5) スケール付着抑制技術の適用影響評価
_スケール付着抑制技術として、スケール分散剤、FFAの国内プラントへの適用を検討する場合には、適用検討に先立って、使用する薬剤の二次系系統構成材料、復水脱塩設備樹脂への影響評価、パッキン、ガスケット等有機系材料への適合性評価を実施しておくことが重要である。

(6) 水質管理技術の適合性検証
_実機で長期間運転に供された廃炉材を用い、SG健全性への水化学管理技術の改善効果、影響について把握・検証を行う。これにより、水化学管理技術の妥当性を確認するとともに、更なる高度化の方向性に対する指標を得る。

(7) 代替ヒドラジン技術の導入
_ヒドラジン代替剤、ヒドラジン量低減策の実機適用に際し、従来のヒドラジンが担う、脱酸素性、SGでの酸化物(酸化剤)還元効果、系統のpH維持の確認を行った上で実機試験を行い、実機での成立性を実証していくことになるが、それに合わせ、対象薬剤の安定性、並びに分解生成物の種類と、構成材料に及ぼす影響(例えばpH低下)についても検証を行う必要がある。

(C) 産官学の役割分担の考え方

(1) 産業界の役割
_① SG伝熱管腐食メカニズムの解明
_② SGクレビス環境評価手法の開発
_③ SGクレビス酸性環境緩衝技術の開発
_④ SGクレビス濃縮環境緩和技術の開発
_⑤ スケール付着抑制技術の適用影響評価
_⑥ 水質管理技術の適合性実力検証
_⑦ 代替ヒドラジンの導入
_⑧ プラント実態を把握するための実機運転データ、水質データの蓄積

(2) 国・官界の役割
_① データや評価技術の検証
_② 国内外状況を確認した上、現実的な対応方針の策定

(3) 学術界
_① 基礎データ、新知見の蓄積と新知見レビュー
_② 新実験技術、新計測技術開発のための基盤研究
_③ 基盤研究に係わる人材育成
_④ 人材の供給

(4) 学協会の役割
_① 民間標準類策定
_② 人的交流と育成

(5) 産官学の連携
_① SG伝熱管健全性確保に対応できる人材の育成

6.1.3.2 スケール付着影響緩和技術の開発
_プラント長期信頼性確保のためには、構成材の健全性を維持するとともに、SGをはじめとする機器内表面へのスケール付着、蓄積に基づく性能劣化現象を極力小さくしていくことが必要である。
_二次系系統で材料のFAC(Flow Assisted / Accelerated Corrosion)によって発生した鉄がSGへ持ち込まれ、SG器内構造物に付着し、伝熱抵抗、流動抵抗となりプラント性能、運用に影響を及ぼす機器の性能劣化現象が顕在化している。
_また、クレビス部にスケールが蓄積することにより、当該部の濃縮倍率が増加し、当該部での損傷発生リスクが増大する。
_これら機器性能劣化を防止し、プラント安定運転を確保していくためには、スケール付着、蓄積を抑制することが重要であり、対応策として系統からの腐食生成物の発生を抑制する技術、機器表面に付着させない技術、機器表面に付着したスケールを除去し機器性能を回復させる技術がある。
_これら技術の適用に対し、水化学改善あるいは化学的技術を基にした新水処理薬剤の適用等による効果的、効率的な対応が必要であり、現状技術の高度化、新技術の開発を推進していくことが重要である。
_SGスケール付着影響緩和技術に関する、現状、研究方針と課題、及び産官学の役割分担について以下に述べる。

(A) 現状分析

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_スケール付着による機器の性能低下抑制対策として、スケール付着に伴う機器性能に対する鉄濃度の関係を整理し、水質改善等による鉄低減対策が適用されつつある[6.1.3.1][6.1.3.6]。しかしながら、スケール付着メカニズム、及び機器の性能低下抑制対策による機器毎の性能変化の精度高い予測は出来ておらず、PWR二次系機器全体のスラッジマネジメントを効率的に進める上での課題となっている。

(2) SGへの鉄持込抑制技術の開発
_SGへの鉄の持ち込み抑制、二次系系統材料のFAC抑制対策として、気液二相流域のpH上昇を目的として、高pH処理、代替アミン処理の適用等給水処理条件の改善に取り組んでいる[6.1.3.12]
_二次系系統の銅系材料を排除し、高pH処理(給水pH9.8~10)を適用したプラントでは、十分な鉄低減効果が得られ、スケール付着抑制傾向が認められつつある。
_一方、銅系材料が残留しているプラントでは、プラント毎に系統構成、材料に配慮し、適切な処理を適用していくことが必要であるが、従来AVTpH9.2~9.8の中間pHではスケール付着試験データ、実機実績が乏しく、スケール付着抑制効果が得られるpHの見極めはできていない。
_また、主に火力プラントで試運用が進められている、低温系統の機器、配管内表面に有機性の皮膜を形成し、当該部からの鉄の溶出を抑制するFFAについては、二次系系統構成材料、復水脱塩設備樹脂への影響評価、パッキン、ガスケット等有機系材料への適合性評価を実施するとともに、高pH処理との併用の必要性について検討を行ったうえで国内プラントへの適用を判断していくことが重要である。

(3) スケール除去・改質技術の開発
_付着スケールを積極的に全量除去することを目的とした手法として、海外で適用されている化学洗浄があげられるが、化学洗浄は高温でかつ比較的高濃度の洗浄液を用いることから、SGの系統構成材に及ぼす影響を確認しておくことが重要であり、また、化学洗浄の実施により多量の高濃度洗浄液を含んだ廃液が発生する。
_一方、付着したスケールの一部を除去、改質する技術として、従来の化学洗浄よりも希薄洗浄液条件かつ低温条件で実施するASCAの国内プラントへの適用が開始されている。本手法はSG器内スケール全量ではなく一部を溶解し、スケール空隙率、脆弱性を増加させることによって伝熱性能の回復、BEC管支持板付着スケールの除去を主目的としたものであり、実機適用実績から期待された効果が得られつつある。しかしながら、SG器内のスケールの一部を洗浄対象としているため、洗浄1回あたりの除去量は少なく、AVT条件下での洗浄頻度は高くなる。

(4) スケール付着抑制技術の開発
_SGにスケールを付着しにくくする技術として、米国において、ポリアクリル酸を用いたスケール分散剤の適用がEPRI主導のもとで検討、実機試運用が開始され、一部スケール付着抑制に対する良好なデータが得られつつある。
_国内プラントへの適用にあたっては、スケール性状、プラント構成、運用の違いによる適用効果の違い、プラント構成材への影響を把握し、適用性を早期に判断する必要がある。

(5) 代替ヒドラジン技術適用への対応
_代替ヒドラジンの実機適用に当たり、使用薬剤の気液分配に基づく気液2相流系統中ミストのpH低下、有機系薬剤の場合はSG器内等高温系統で分解、生成する有機酸による主に蒸気中ミストのpH低下挙動と、pH低下がFAC速度に及ぼす影響を確認しておくことが重要である。
_また、使用する薬剤、並びに分解生成物がスケールの稠密化に及ぼす影響の有無を把握しておくことが必要である。

(B) 研究方針と実施にあたっての問題点

_SGの長期信頼性を確保し、プラントの公益性を高めるためには、上述した現状課題に対し、以下に示すような水化学技術の高度化、新技術の開発に継続的に取り組んでいくことが重要である。

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_高温水中機器(熱交換器、給水ポンプ、制御弁、流量計等)へのスケール付着抑制対策を検討するため、各機器環境条件下でのスケール付着メカニズムを解明する。また、スケール付着抑制対策を検討するための付着現象再現試験及び機器性能変化予測方法の構築を行う。

(2) SGへの鉄持ち込み抑制技術の開発
_プラント毎に系統構成、材料を考慮したスケール付着抑制効果を得るための給水pH条件、並びにpH上昇手法(代替アミン等)を検討し、実機適用に際しては、系統構成材料への影響、プラント運用について検討を行う。
_また、高pH処理、代替アミン処理等SGへの鉄持ち込み技術を適用したプラントの、鉄低減実績、スケール付着抑制効果を評価し、新たな代替アミンの適用等更なる対応策の必要性、手法について検討を行う。
_一方、FFAの国内プラントへの適用に関しては、高pH処理、代替アミン処理との併用の必要性を見極めるとともに、二次系系統使用材料との適合性評価を行っていく。

(3) スケール除去・改質技術の開発
_ASCA洗浄は、AVT条件下でBEC閉塞、伝熱性能低下効果を維持するためには1~2回定検毎の高頻度適用が必要であり、廃液タンク設置に大きなスペースを必要とし、廃液処理に長期間を要している。このため、廃液処理の合理化(廃液の排出時その場処理、廃液処理手法の改善等)技術の開発、適用を行う。
_また、ASCA洗浄はSGクレビス部等の強固なスケールを除去できる洗浄手法ではないことから、SG二次側構成材料の健全性を確保しつつ、スケール除去、改質効果が高く、強固なスケールも洗浄可能な除去技術の開発を行う。

(4) スケール付着抑制技術の開発
_EPRI主導のもと検討されているスケール分散剤の国内プラントへの適用性評価を行う。
_国内プラントへの適用性判断にあたり、スケール性状、プラント構成の違いによる適用効果、プラント構成材への影響、プラント運用への影響を見極め、適用効果が限定される、あるいは構成材料に影響がある場合、新分散剤の開発、実機適用性検討を行う。

(5) 代替ヒドラジン技術適用への対応
_代替ヒドラジンの国内プラントへの適用にあたり、使用する薬剤のプラント運転中の還元効果、プラント停止中の保管時腐食抑制効果、並びに環境負荷への影響を確実に把握するとともに、使用する薬剤、並びに分解生成物のプラント構成材への影響、プラント運用への影響、スケール稠密化に対する影響について十分なプラント適用性検討を行う。

(C) 産官学の役割分担の考え方

(1) 産業界の役割
_① スケール付着メカニズムの解明と付着抑制技術の開発
_② SGへの鉄持ち込み抑制技術の開発
_③ スケール除去・改質技術の開発
_④ スケール付着抑制技術の開発
_⑤ 代替ヒドラジン適用への対応
_⑥ プラント実態を把握するための実機運転データ、水質データの蓄積

(2) 国・官界の役割
_① データや評価技術の検証
_② 国内外状況を確認した上、現実的な対応方針の策定

(3) 学術界
_① 基礎データ、新知見の蓄積と新知見レビュー
_② 新実験技術、新計測技術開発のための基盤研究
_③ 基盤研究に係わる人材育成
_④ 人材の供給

(4) 学協会の役割
_① 民間標準類策定
_② 人的交流と育成

(5) 産官学の連携
_① スケール付着影響緩和技術の開発に対応できる人材の育成

図6.1.3-1に導入シナリオ、表6.1.3-1に技術マップ、図6.1.3-2図6.1.3-3にロードマップを示す。

参考文献

[6.1.3.1] 日本原子力学会編, “原子炉水化学ハンドブック”, コロナ社 (2000).
[6.1.3.2] I. Ohsaki et.al, Proc. of Internal SG & Heat Exchanger Conf., Tront, Canada, 2, p.893 (1994).
[6.1.3.3] PWR Secondary Water Chemistry Guide Lines Revision 6, EPRI 108224 (2004).
[6.1.3.4] A. Kishida, H. Takamatsu, H. Kitamura et al., “The Causes and Remedial Measures of Steam Generator Tube Intergranular Attack in Japanese PWR”, Proc. 3rd Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, p.465 (1987).
[6.1.3.5] K. Fruzzetti, “Pressurized Water Reactor Lead Sourcebook”, EPRI 1013385 (2006).
[6.1.3.6] A. Maeda et al., Proc. of International Conference on Water Chemistry of Nuclear Systems, NPC2012, Paris, France (2012).
[6.1.3.7] 八島清爾, 原子力工業, 41[4], 62-69 (1995).
[6.1.3.8] T. Tsuruta, S. Okamoto, E. Kadokami, and H. Takamatsu, “IGA/SCC Crack Propagation Rate Measurement on Alloy 600 SG Tubing Using a Side Stream Model Boiler”, The 3rd JSME/ASME Joint International Conference on Nuclear Engineering, Kyoto, Japan, p.291 (1995).
[6.1.3.9] Y. Shoda, E. Kadokami, and T. Hattori, “Examination of New Bulk Water Molar Ratio Index for Crevice Environment Estimation”, Proc. of International Conference on Water Chemistry of Nuclear Systems 7, Bournemouth, UK, p.608 (1996).
[6.1.3.10] M. Little, R. Varrin, A. Pellman, and M. Kreider, “Advanced Scale Conditioning Agent (ASCA) Applications: 2012 Experience Update”, Proc. of International Conference on Water Chemistry of Nuclear Systems, NPC2012, Paris, France, Paper No.O60-140 (2012).
[6.1.3.11] U. Ramminger, S. Hoffmann-Wankerl, and J. Fandrich, “The application of film-foming amines in secondary side chemistry treatment of NPPs”, Proc. of International Conference on Water Chemistry of Nuclear Systems, NPC2012, Paris, France, 26.Sep. (2012).
[6.1.3.12] O. Jonas, “Control Erosion/Corrosion of Steels in Wet Steam”, Power, p102 (1985).

 

課題調査票

課題名

SG伝熱管の健全性確保

マイルストーン
及び
目指す姿との関連

短Ⅴ.保全・運転負荷軽減・品質向上
⇒効果的・継続的な自主的安全性向上のため、保全・運転管理の確立、高度化を図る必要がある。中Ⅱ.既設プラントの高稼働運転と長期安定運転の実現
⇒電力安定供給、かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期間運転が必要となる。

概要(内容)

(1) SG伝熱管腐食メカニズムの解明
_SG伝熱管材料の腐食メカニズムについては、酸性、アルカリ性環境下で酸化剤の共存により発生することが確認され、SGへの不純物、酸化剤持込み防止による管理手法を確立、提案、実機適用することにより、SG二次側伝熱管損傷は大幅に低減した。しかしながら、鉛等一部の微量金属成分が関与する腐食メカニズム、クレビスへの濃縮挙動は明確になっておらず、これらを明確化することにより、管理要否、手法を検討する。(2) SGクレビス環境評価手法の開発・高度化
_SGクレビス環境が伝熱管の腐食環境にないことをモデルボイラー試験、計算評価の構築により、間接的に環境評価を行っているが、より直接的な監視を行う上でのin-situe監視技術等の開発・検証を行う。

(3) SG二次側クレビス酸性環境緩和技術の開発
_最近の実機二次系水質実績において、SGクレビス環境の酸性化傾向が認められ、当該環境を中和でき、クレビスに析出・付着してクレビス容積を減少させない、揮発性等の中和剤の開発、効果確認、実機適用を行う。

(4) SGクレビス濃縮環境緩和技術の開発
_プラントの運転長期化に伴いSGへ持ち込まれた鉄がSG二次側クレビス等へ付着し濃縮環境を増加させる。SG二次側に付着した固着スケールを構成材料の健全性を確保した上で除去できる技術を検討する。

(5) スケール付着抑制技術の適用影響評価
_スケール付着抑制技術として、スケール分散剤、フィルムフォーミング・アミン(FFA)等の国内プラント適用の必要性、適合性に関する見極めを早期に行う。

(6) 水質管理技術の適合性検証
_長期の水化学管理技術適用の妥当性を確認するために、廃炉活用研究として実機材の抜管調査等による実力適合性検証手法の検討、確立を行う。

(7) 代替ヒドラジン技術の導入
_SG伝熱管健全性確保のため、系統内還元性維持のため使用されているヒドラジンは、将来的に、有害物質として使用が制限される可能性が大きく、ヒドラジンを使用しない水処理の検討を行う。

導入シナリオとの関連

_水化学によるSG伝熱管腐食メカニズムの明確化と、環境評価技術高度化、環境緩和技術の開発・実機適用によるSG伝熱管長期健全性の向上

課題とする根拠
(問題点の所在)

(1) SG伝熱管腐食メカニズムの解明
_海外で鉛等微量金属が関与すると想定されるSG伝熱管損傷が認められている。国内プラント水質実績から、鉛等微量金属成分が確認されているが、これら微量金属のクレビスへの濃縮挙動、SG伝熱管腐食への影響、供給系統の特定ができておらず、管理手法の設定ができていない。(2) SGクレビス環境評価手法の開発・高度化
_SGクレビス環境評価コードは、計算を介した環境評価であり、一方、模擬濃縮部を設けたモデルボイラー、高温電極による直接監視評価技術は、設備が大がかりとなり、連続計測が困難である等課題があり、実用化に至っていない。

(3) SG二次側クレビス酸性環境緩和技術の開発
_クレビス環境酸性化の要因の一つにコンデミ樹脂の劣化生成物であるPSS(ポリスチレンスルホン酸)の持込があげられ、酸性環境中和手法の一つとして、Ca、Mg等アルカリ土類金属添加が検討されたが、これら化学成分の塩類は当該環境での溶解度が小さく、クレビスに析出・付着してクレビス容積を減少させ、濃縮倍率を増加させる懸念がある。

(4) SGクレビス濃縮環境緩和技術の開発
_SG器内クレビスの濃縮低減による腐食環境緩和のためには、SG二次側構成材料健全性確保、廃液環境負荷低減を考慮した、スケール除去効果の高い技術の開発が必要である。

(5) スケール付着抑制技術の適用影響評価
_スケール分散剤、FFAの国内プラントへの適用を検討する場合には、適用検討に先立って、使用する薬剤の二次系系統構成材料への適合性評価、復水脱塩設備樹脂への影響評価を実施しておくことが重要である。

(6) 水質管理技術の適合性検証
_実機で長期間運転に供された廃炉材を用い、SG健全性への水化学管理技術の改善効果、影響について把握・検証を行い、水化学管理技術の妥当性確認、更なる高度化の方向性に対する指標を得る。

(7) 代替ヒドラジンの導入
_ヒドラジン代替剤、ヒドラジン量低減策の実機適用に当たり、脱酸素性、SGでの酸化物(酸化剤)還元効果、系統のpH維持の確認を行うとともに、対象薬剤の安定性、分解生成性生物の種類と、構成材料に及ぼす影響(例えばpH低下)について検証を行う必要がある。

現状分析

(1) SG伝熱管腐食メカニズムの解明
_鉛等微量金属のSG器内での濃縮挙動、腐食寄与が不明であり、SG伝熱管腐食に及ぼす影響が明確化できておらず、管理方針が決定できていない。(2) SGクレビス環境評価手法の開発・高度化
_プラント運転中のクレビス環境が適切に管理できているか直接的に監視できる技術の実機適用には至っていない。本技術開発により、腐食メカニズム解明、環境緩和技術の開発に対し、検証ツールとなることが期待できる。

(3) SG二次側クレビス酸性環境緩和技術の開発
_硫酸イオン持込抑制対策として、更なる復水脱塩設備カチオン樹脂劣化防止、溶出低減対策技術の導入が進められている。一方、酸性クレビス環境中和対策として、非析出型中和剤の基礎検討を開始しているが、化学物性に基づく机上検討の段階である。

(4) SGクレビス濃縮環境緩和技術の開発
_海外適用実績のある化学洗浄は、クレビス固着スケールの除去効果が十分ではなく、廃液処理負荷が非常に大きい。一方、国内実績のある希釈化学薬品を用いるASCAは、固着スケールの除去には適していない。

(5) スケール付着抑制技術の適用影響評価
_SGへの鉄持ち込み抑制技術の適用効果に基づき、スケール分散剤、フィルムフォーミング・アミン(FFA)適用の必要性の見極め、適用に際しては適合性の見極めを行うことが必要である。

(6) 水質管理技術の適合性実力検証
_長期の水化学管理技術適用の妥当性を確認するための、廃炉活用研究による実力適合性検証手法を確立する必要がある。

(7) 代替ヒドラジン技術の導入
_系統内還元性維持のため、各種代替ヒドラジン剤の適用性検討が行われてきたが、現状適合剤の選定に至っていない。

期待される効果
(成果の反映先)

・SG伝熱管健全性向上によるプラント信頼性向上

・スケール除去方法の適正化による環境負荷軽減

実施にあたっての問題点

課題全体の共通問題として下記がある。

    • 課題の緊急性(当面SG伝熱管健全性は良好)
    • 課題の原子力安全との相関性の明確化(SG伝熱管の長期健全性確保)
    • 研究開発費の確保(SA対策、再稼動対応ではないため費用の早期確保が難しい可能性あり)

必要な人材基盤

(1) 人材育成が求められる分野

    • 水化学、状態監視技術
    • 化学物性評価技術
    • 腐食環境評価技術
    • 高温、高圧条件下実験技術

(2) 人材基盤に関する現状分析

    • 電力事業者は、プラント運転を通じ評価データの蓄積、検討課題の抽出、確認を実施してきた。
    • プラントメーカは、国プロ、電共研、委託研究で研究開発を実施し、必要な人材の育成を行ってきた。
    • 大学等では、共同研究、インターシップ等により、技術交流、人材育成を行ってきた。
    • 水化学技術は大学での専門コース、講座等が無いため、(1)項の各技術分野に対しOJTを通じて人材育成してきた。
    • 海外の新技術導入について、積極的な情報の入手を行うことを念頭においた人材育成が必要である。

(3) 課題

    • 1F事故後のプラント長期停止により、電力事業者、プラントメーカとも実務経験を積む場が減少している。
    • 原子力プラント水化学関連改善技術については、SA対策、プラント再稼動に係わる項目ではないため、開発研究の実施が先送りとなり、OJTを通じた人材育成が行えていない。
    • 上記に伴い、若手技術者の原子力離れを招き、ベテラン技術者からの技術伝承が円滑に行えない状況になりつつある。

他課題との相関

    • S111_d32:状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
    • S111_d39:検査・補修技術の高度化
    • S111M107_d36:高経年化評価手法・対策技術の高度化
    • M106_c01:計測技術・解析技術の高度化

実施時期・期間

中期(2030年)

実施機関/資金担当
<考え方>

産業界・学術界/産業界
_SG伝熱管腐食メカニズムの解明、SGクレビス環境評価技術の開発・高度化、クレビス環境、濃縮緩和対策に関する技術開発を実施
<考え方>

    • 電力事業者はプラント実態を確認し、研究開発課題の選定、実機適用、実機適用効果の確認・評価を行う。
    • プラントメーカは研究開発課題に応じた技術開発を推進し、プラント毎に具体的な設計を行い、電力事業者が実施する実機適用、適用効果の評価に関する支援を行う。
    • 電力事業者、プラントメーカは技術開発が必要な技術課題、検討に必要な技術分野について大学側へ発信を行う。
    • 研究機関は、技術開発に必要な要素技術の開発、検証を実施する。
    • 大学は、技術開発に必要な要素技術に関する研究を推進するとともに、研究開発に必要な人材を育成する。
    • 実施主体が資金担当となることが適当と考える。

原子力規制委員会/原子力規制委員会
(必要に応じ、規制の枠組みの整備、技術評価)
<考え方>

    • 電気事業者は、新規制基準及び軽水炉安全技術・人材ロードマップに則り、事業主体として安全性向上に努める。
    • 電力事業者は、事業主体として保全の信頼性向上に努める。
    • プラントメーカは、必要な技術開発に努める。
    • 原子力規制委員会は、電気事業者のニーズを踏まえて、規制基準、及び導入の枠組みを定め、技術評価を行う。
    • 実施主体が資金担当となることが適当と考える。
    • 原子力規制委員会が規制の観点から主体となる事項について資金担当となることが適切。

産業界・学協会/産業界
_SG伝熱管の健全性評価に関する規格基準の策定
<考え方>

    • 産業界(電気事業者、プラントメーカ)が主体となって、SG伝熱管健全性確保に必要な水化学技術の高度化を図る。
    • 学協会は、SG伝熱管健全性確保、及び付随して必要となる水化学技術に係わる規格基準等について検討を行う。
    • 原子力規制委員会は、SG伝熱管健全性確保、及び付随して必要となる水化学技術に係わる規格基準を整備し、技術評価、及び認可を行う。

その他

 

課題調査票

課題名

スケール付着影響緩和技術の開発

マイルストーン
及び
目指す姿との関連

短Ⅴ.保全・運転負荷軽減・品質向上
⇒効果的・継続的な自主的安全性向上のため、保全・運転管理の確立、高度化を図る必要がある。中Ⅱ.既設プラントの高稼働運転と長期安定運転の実現
⇒電力安定供給、かつコストバランスに優れたエネルギー源としての利用に向け、高稼働運転や適切な高経年化対策を前提とした長期間運転が必要となる。

概要(内容)

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_高温水中機器(熱交換器、給水ポンプ、制御弁、流量計等)へのスケール付着抑制対策を検討するため、各機器環境条件下でのスケール付着メカニズムを解明する。また、スケール付着抑制対策を検討するための付着現象再現試験及び機器性能変化予測方法の構築を行う。(2) SGへの鉄持込抑制技術の開発
_スケール付着事象毎に抑制に必要なpH条件、プラント構成毎のpH上昇手法(pH調整剤の変更等)、海外火力等で試運用が開始されている、FFA(フィルム・フォーミング・アミン)の適用性について検討する。

(3) スケール除去・改質技術の開発
_SG二次側構成材料の健全性を確保しつつ、よりスケール除去、改質効果の高い洗浄技術の開発を行う。

(4) スケール付着抑制技術の開発
_EPRI主導の元、米国にて検討されているスケール分散剤の国内プラントへの適用性評価、並びに国内プラントに適した新分散剤についても検討を実施する。

(5) 代替ヒドラジン適用への対応
_代替ヒドラジンの実機適用に当たり、使用薬剤、分解生成物による気液2相流系統中ミストのpH低下がFAC速度に及ぼす影響、スケールの稠密化に及ぼす影響の有無を把握しておく。

導入シナリオとの関連

_水化学によるスケール付着メカニズムの明確化と、鉄低減技術高度化、スケール除去・改質技術の開発・実機適用によるプラントの長期安定運用確保、性能低下抑制、保守点検作業の適正化

課題とする根拠
(問題点の所在)

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_スケール付着による機器の性能変化抑制対策として、水質改善等による鉄低減対策がなされつつあるが、スケール付着メカニズム及び機器の性能変化抑制対策による機器毎の性能変化の精度高い予測は出来ておらず、PWR二次系機器全体のスラッジマネジメントを効率的に進める上での課題となっている。(2) SGへの鉄持込抑制技術の開発
_プラント毎に系統構成、材料を考慮したスケール付着抑制効果を得るための給水pH条件、並びにpH上昇手法(代替アミン等)を検討し、実機適用に際しては、系統構成材料への影響、プラント運用について検討を行う必要がある。また、海外火力等で試運輸が開始されつつあるFFAについて、高pH処理等pH上昇対策との併用の必要性を検討するとともに、二次系系統設備、材料との適合性を確認しておくことが必要である。

(3) スケール除去・改質技術の開発
_ASCAの高頻度での適用は、洗浄廃液処理の対応負荷増大にもつながっており、SG二次側構成材料の健全性を確保しつつ、よりスケール除去、改質効果の高い洗浄技術の開発が必要である。また、高pH処理等水処理改善後の生成スケールに対する改質効果の確認ができておらず、早期の実機検証、洗浄改善要否の判断が急務である。

(4) スケール付着抑制技術の開発
_国内プラントへの適用性判断にあたり、スケール性状、プラント構成の違いによる適用効果、プラント構成材への影響、プラント運用への影響を確実に見極める必要がある。また、既存の分散剤で効果が限定される、あるいは他の構成材料に影響がある場合、新分散剤の開発、実機適用性検討が必要である。

(5) 代替ヒドラジン技術適用への対応
代替ヒドラジンの適用にあたり、使用する薬剤のプラント運転中の還元効果、プラント停止中の保管時腐食抑制効果、環境への影響、プラント構成材への影響、プラント運用への影響、スケール稠密化に対する影響について十分なプラント適用性検討を行う必要がある。

現状分析

(1) スケール付着メカニズムの解明と付着抑制評価技術・再現試験技術の開発
_スケール付着に伴う機器性能に対する鉄濃度の関係が整理されつつあるが、系統水中鉄形態等も考慮した詳細予測モデルはなく、また、再現試験は高鉄濃度条件下で実施している等必ずしも実機を模擬・再現出来ていない。(2) SGへの鉄持込抑制技術の開発
_pH処理(給水pH9.8~10)適用プラントでは、十分な腐食生成物低減効果が得られ、スケール付着に対しても抑制傾向が認められつつある。一方、プラント毎に、系統構成、材料に配慮し、適切な処理を適用していくことが必要であるが、従来AVTのpH9.2~9.8の中間pHではスケール付着試験データ、実機実績が乏しく、スケール付着抑制効果が得られるpHの見極めはできていない。

(3) スケール除去・改質技術の開発
_SG二次側の付着スケール除去に効果的であるASCAは、BEC閉塞、伝熱性能低下効果を維持するためには、AVT条件下では1~2回定検毎の高頻度適用が必要であり、廃液負荷の低減が必要。また、水処理改善条件化スケール改質効果の確認に基づく、適用頻度の適正化が必要。

(4) スケール付着抑制技術の開発
_国内プラントへの適用に際し、スケール性状、プラント構成、運用の違いによる適用効果の違い、プラント構成材への影響を確実に把握し、国内プラントへの適用性を早期に判断する必要がある。

(5) 代替ヒドラジン技術適用への対応
_系統内還元性維持のため、各種代替ヒドラジン剤の適用性検討が行われてきたが、現状適合剤の選定に至っていない。

期待される効果
(成果の反映先)

    • 高温水系統でのスケール付着現象の再現と影響予測式の構築。
    • SGをはじめとする機器へのスケール付着抑制により、長期安全性の確保、プラント安定運転の維持に貢献

実施にあたっての問題点

課題全体の共通問題として下記がある。

    • 課題の緊急性(SA対策、再稼動対応ではないが、プラント安定運用の観点から早期の対応が必要)
    • 課題の原子力安全との相関性の明確化(プラント安定運転の維持に貢献)
    • 研究開発費の確保(SA対策、再稼動対応ではないが、プラント安定運用の観点から早期の対応が必要)

必要な人材基盤

(1) 人材育成が求められる分野

    • 水化学、状態監視技術
    • 化学物性評価技術
    • 腐食環境評価技術
    • 高温、高圧条件下実験技術

(2) 人材基盤に関する現状分析

    • 電力事業者は、プラント運転を通じ評価データの蓄積、検討課題の抽出、確認を実施してきた。
    • プラントメーカは、国プロ、電共研、委託研究で研究開発を実施し、必要な人材の育成を行ってきた。
    • 大学等では、共同研究、インターシップ等により、技術交流、人材育成を行ってきた。
    • 水化学技術は大学での専門コース、講座等が無いため、(1)項に示した各技術分野の人材をOJTを通じて人材育成してきた。
    • 海外の新技術導入について、積極的な情報の入手を行うことを念頭においた人材育成が必要である。

(3) 課題

    • 1F事故後のプラント長期停止により、電力事業者、プラントメーカとも実務経験を積む場が減少している。
    • 原子力プラント水化学関連改善技術については、SA対策、プラント再稼動に係わる項目ではないため、開発研究の実施が先送りとなり、OJTを通じた人材育成が行えていない。
    • 上記に伴い、若手技術者の原子力離れを招き、ベテラン技術者からの技術伝承が円滑に行えない状況になりつつある。

他課題との相関

    • S111_d32:状態監視・モニタリング技術(予兆監視・診断、遠隔監視・診断等)の高度化
    • S111_d39:検査・補修技術の高度化
    • S111M107_d36:高経年化評価手法・対策技術の高度化
    • M106_c01:計測技術・解析技術の高度化

実施時期・期間

中期(2030年)

実施機関/資金担当
<考え方>

産業界・学術界/産業界
_スケール付着メカニズムの明確化と、鉄低減技術高度化、スケール除去・改質技術の開発・実機適用によるプラントの長期安定運用確保、性能低下抑制対策に関する技術開発を実施。
<考え方>

    • 電力事業者はプラント実態を確認し、研究開発課題の選定、実機適用、実機適用効果の確認・評価を行う。
    • プラントメーカは研究開発課題に応じた技術開発を推進し、プラント毎に具体的な設計を行い、電力事業者が実施する実機適用、適用効果の評価に関する支援を行う。
    • 電力事業者、プラントメーカは技術開発が必要な技術課題、検討に必要な技術分野について大学側へ発信を行う。
    • 研究機関は、技術開発に必要な要素技術の開発、検証を実施する。
    • 大学は、技術開発に必要な要素技術に関する研究を推進するとともに、研究開発に必要な人材を育成する。
    • 実施主体が資金担当となることが適当と考える。

原子力規制委員会/原子力規制委員会
(必要に応じ、規制の枠組みの整備、技術評価)
<考え方>

    • 電力事業者は、事業主体として保全の信頼性向上に努める。
    • プラントメーカは、必要な技術開発に努める。
    • 原子力規制委員会は、電気事業者のニーズを踏まえて、規制基準、及び導入の枠組みを定め、技術評価を行う。
    • 実施主体が資金担当となることが適当と考える。
    • 原子力規制委員会が規制の観点から主体となる事項について資金担当となることが適切。

産業界・学協会/産業界
_スケール付着抑制、除去技術に関する規格基準の策定
<考え方>

    • 産業界(電気事業者、プラントメーカ)が主体となって、スケール付着抑制、除去技術に必要な水化学技術の高度化を図る。
    • 学協会は、スケール付着抑制、除去技術、及び付随して必要となる水化学技術に係わる規格基準等について検討を行う。
    • 原子力規制委員会は、スケール付着抑制、除去技術、及び付随して必要となる水化学技術に係わる規格基準を整備し、技術評価、及び認可を行う。

その他

 

9. おわりに

_水化学ロードマップ 2020 を刊行する。
_福島第一原子力発電所の事故を経験して、原子力技術ならびに水化学技術を取り巻く環境は大きく変化した。今回の改訂では、軽水炉安全技術・人材ロードマップとの整合性を図りながら、水化学技術の意義を改めて見直し、より広い視点でその役割を再定義した。新たに章を設けて、深層防護の観点から水化学技術の役割について考察を深め、また、核分裂生成物の挙動や汚染水処理等、過酷事故のレベルにおいても水化学が果たす役割は大きいことから、やはり章を新設して事故時対応の水化学を記述した。一方では、これまで水化学ロードマップにおいて安全基盤研究の 3 本柱と位置づけてきた「構造材料の高信頼化」、「燃料の高信頼化」、「被ばく線源低減・環境負荷低減」は、その重要性が変わるものではなく、前回のロードマップ改訂から十余年の技術的進展を網羅して反映するべくこれらの章の内容を見直した。共通基盤技術についても同様である。
_前回 2009 年版から十余年ぶりの改訂であることのみならず、2011 年の福島第一原子力発電所事故を経て原子力発電における水化学技術の役割を根本から問い直した結果、大幅な改訂となった。改訂作業の過程で、原子力安全、材料、核燃料等、関連する他分野の専門家と意見を交わし、議論を重ねた。これは、コミュニケーション・ツールとしてのロードマップの意義を再認識する機会ともなった。
_次世代の水化学分野の技術者・研究者にとって目指すべき方向を指し示す道標として、また、他分野の技術者との意思疎通を深めるツールとして、水化学ロードマップ 2020 が役割を果たすことを期待する。水化学ロードマップ 2020 の編纂は、水化学部会メンバーの尽力によるものである。関係者の惜しみない協力に深く感謝する。

2020 年 3 月 4 日
水化学ロードマップフォローアップ検討ワーキンググループ
主査 渡邉 豊