PWR 1次冷却系の水化学が Ni基合金のSCC発生に及ぼす影響の研究

三菱重工業株式会社 垣谷 健太、佐藤 賢二、志水 雄一 日本原子力発電株式会社 杉野 亘^{*}、 中野 佑介

※ 現(一財)日本エネルギー経済研究所

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

- 導入
- トピック1 (LiOHをKOHで代替した際の影響)
- ・トピック2 (溶存水素濃度の影響)
- まとめと今後の課題

PWR 1次冷却系におけるNi基合金

- Ni基合金は蒸気発生器伝熱管や炉内計装筒(BMI)といった1次冷却系の主要部位 に使用されている。
- 低合金鋼とオーステナイト系ステンレス鋼の中間程度の熱膨張係数を持つNi基合金は、 これらの異材溶接部として広く使われている。

PWSCC (Primary Water Stress Corrosion Cracking)

- 1次冷却系におけるNi基合金の応力腐食割れはPWSCCと呼ばれる。PWSCCによる損 傷事例が国内外で経験されており、主要な劣化事象と認識されている。
- PWSCCは、材料・環境・応力が重畳して起こる事象で、材料・環境・応力の各面から対 策が講じられてきた。
- ・ 今回、PWSCCの環境因子としての水化学の研究トピックを紹介する。

PWR1次冷却系の水化学の概要

- ・ 炉心反応度制御のための中性子吸収剤として、BをH3BO3の形で添加。
- pH調整剤としてLiOHを添加。¹⁰B(n,a)⁷LiによってLiが生じることが考慮され、 LiOHがpH調整剤として選定された経緯。
- 水の放射線分解に伴う電位上昇を防ぐため、溶存水素(DH)を添加。

表. PWR1次冷却水の仕様例^[1]

[1] 日本原子力学会水化学部会、「改定 原子炉水化学ハンドブック」(コロナ社、2022).

発表目的および位置づけ

- PWSCCは、発生過程と進展過程に大別される。日本ではき裂が生じた 状態での運転が認められていないことから、これまで国内では、PWSCC の発生を抑制することが重視されてきた経緯がある。
- 今回、特に、<u>PWSCC発生に対する1次冷却系の水化学の影響</u>を紹介することを目的とする。
- 実機でのPWSCC発生は、10年超等の長期間を要することもある現象である。今回発表では、PWSCC発生に対する水化学の影響を合理的な期間でスクリーニングするため、材料や応力や温度について、加速条件(PWSCCが発生しやすい条件)としている。

- 導入
- トピック1 (LiOHをKOHで代替した際の影響)
- ・トピック2(溶存水素濃度の影響)
- まとめと今後の課題

各トピックに関連する既発表資料

トピック 1

- The Proceedings of the International Conference on Nuclear Engineering (ICONE) 30 (2023) No.1017.
- Mechanical Engineering Journal 11 (2024) No.23-00317.
- 日本原子力学会2024年秋の大会(2024)発表番号1M05.

トピック 2

- Corrosion 78 (2022) 885-893.
- Journal of Nuclear Science and Technology 61 (2024) 397-402.

 $\ensuremath{\mathbb{C}}$ MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

背景

- 現在 1次冷却水に ⁷Liの同位体を濃縮したLiOHを添加。
- 生産国の限られる同位体濃縮Liの供給リスクがあり^[1]、LiOH の代替剤の検討が求められている。
- ロシア型加圧水型原子炉(VVER)では長年のKOH使用 実績があり、西欧型PWRへの適用性が期待されている。
- PWRの1次冷却水へKOHを添加した実績はなく、事前の検 証が必要。

[1] U.S. Government Accountability Office

GAO-13-716, "Managing Critical Isotopes: Stewardship of Lithium-7 is Needed to Ensure a Stable Supply", 2013.

KOH適用に向けた検討課題としてのPWSCC

- KOH適用性は広い視点での検討が必要であり、米国EPRIを中心に検討が進められている。
- VVER にはNi基合金が使用されていないのに対し、PWRでは多くの部位にNi基合金が使用されており、PWSCCは重要な課題と考えられている。
- 米国ではPWSCC進展データが充実しているが、PWSCC発生のデータは多くない。日本ではき裂が生じた状態での運転が認められていないことから、特に国内ではPWSCC発生のデータ拡充が求められる。

表. KOH週用に回けに検討課題 ([1]の又厭を参考に作成)			
課題項目			
系統材料の健全性	PWSCC (Ni基合金) ← 特に国内では発生過程が重要		
	IGSCC (ステンレス鋼)		
	IASCC (ステンレス鋼)		
燃料被覆管の健全性			
被ばく線量			
運転管理方法(pH管理)			

[1] K. Fruzzetti, et al., "Evaluation of Potassium Hydroxide for Reactor Coolant pH_T Control in Western PWRs", Proc. of NPC2016 (2016)

表. KOH適用に向けた課題(「1]の文献を中心に整理)

(ご参考) KOH適用に向けた検討課題

*	MITSUBISHI
	HEAVY INDUSTRIES

	課題	状況
	PWSCC	KOHの適用実績のあるVVERにはNi基合金が用いられていない。それに対し、PWRでは多くの部位にNi基合
玄統	(Ni基合金)	金か使用されており、KOHの影響評価が重要課題 ⇒ 本研究の検討対象とした。
お和の	IGSCC	溶存酸素濃度が高い水質(キャノピーシール部等)やアルカリ成分が濃縮し得るクレビス水質(加圧器加熱
	(ステンレス鋼)	器等)での適用性は今後検証が必要。
1)建土1土	IASCC	Chenら[2]が304SSについて、Sinjlawiら[3]が347SSに対して、LiOH環境とKOH環境でIASCC感受性
	(ステンレス鋼)	に大差がないデータを報告している。
燃料被覆管 の健全性		VVERでは主にZr-1%Nbが燃料被覆管に用いられており、その材料がKOH適用時に健全であることは知られ
		ているが、PWRで使用されるジルカロイの健全性は検証が必要とされている。なお、ジルカロイ-2の全面腐食速 度が1:jのH環境とりKのH環境で低くなることは1962年に発表されている[4]
		反かLIOT現現よりKOT現現に回いなるとCは1702中に光公C1しいる[4]。
被ばく線量		炉内の反応で生じる ⁴² Kは高エネルギーのγ線を放出する核種であり、VVERでは主要な被ばく線源の1つとされている。PW/RでのKOH適用に際しては、被げくへの影響の事前評価が必要である。EPRI等による評価が阻
		在進められていることが2023年に国際学会で発表されている[5]。
運転	管理方法	冷却水にはKOH由来のKと炉心の核反応で生じる ⁷ Liが混在する。混合系のpH管理法を予め策定する必要
(p	H管理)	がある。解析による検討では、従来同様にイオン交換樹脂によってpH管理が可能とされている [6,7]。

[1] K. Fruzzetti, Proc. of NPC2016 (2016),[2] K. Chen, J. Nucl. Mater. (2022), [3] A.S. Sinjlawi, J. Nucl. Mater. (2023), [4] H. Coriou, J. Nucl. Mater. (1962), [5] K. Fruzzetti, Proc. of NPC2023 (2023), [6] J. Dingee, Proc. of NPC2018 (2018), [7] 村上、原子力学会2024秋の大会(2024).

目的:PWSCC発生に対するKOH適用の影響評価

試験方法(PWSCC発生試験)

	表. 高温水	Autoclave	
	条件	備考	
材料	X-750合金	PWSCC感受性が高まる熱処理条件	
応力	744 MPa	供試材の360℃での0.2%耐力の1.1倍 (次ページで補足)	作力标果
温度	360°C	実機温度(約290~320℃)より高い 温度加速条件	
水質 条件	パラメータ	詳細は後述	UCL test facility Up to 14 specimens
試験片	10個/条件	各試験片の破断時間からPWSCC発生感受性を評価	can be attached

試験片材料の引張試験による応力条件の設定

- 試験片材料の引張試験(360°C)の結果、0.2%耐力(σ_{0.2})は677 MPa、引張強さは 1066 MPaであった。
- ベースとなるDH濃度30 ml/kgの条件で1000時間程度で試験片破断が期待できる条件とするため、σ_{0.2}の1.1倍(744 MPa)の負荷応力条件とした。

本研究における引張試験の結果

図2. X-750合金のPWSCC発生に及ぼす応力と温度の影響[1]

[1] 米澤, Ni基合金の高温純水中での応力腐食割れに関する研究(1987)

試験の水質条件

MITSUBISH

		pH調整剤	はふ秘測度	nH .	
No. アルカリ種		モル濃度	ppm as B	PH285℃ (計算値)	
1	Li	Li 2 ppm相当	500	7 1	サイクル
2	к	(K: 11 ppm)	500	7.1	中期想定
3	Li	Li 3.5 ppm相当	1800	6.8	サイクル
4	К	(K: 20 ppm)			初期想定

[共通条件]

温度: 360°C 溶存酸素(DO): ≤ 5 ppb 溶存水素(DH): 30 ml/kg-H₂O 試験時間: 1000 h

MITSUBISH

LiOHとKOHの場合でPWSCC発生感受性に差は認められないと評価

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved

破面のSEM観察(Li 2 ppm相当のモル濃度)

いずれも粒界破面であり、PWSCC(粒界型SCC)が確認された

MITSUBISH

結果②: Li 3.5 ppm相当のモル濃度での比較

▶ いずれの水質条件でも、10個すべての試験片が破断。

LiOHとKOHの場合でPWSCC発生感受性に差は認められないと評価

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved

破面のSEM観察(Li 3.5 ppm相当のモル濃度)

いずれも粒界破面であり、PWSCC(粒界型SCC)が確認された

4条件の比較(薬剤濃度の影響)

- ▶ 本研究では、 [Li: 2ppm、B: 500 ppm]の条件に比べて、 [Li: 3.5 ppm、B: 1800 ppm]の破断時間が僅かに短い傾向。
- ▶ Li-B濃度の影響については、既往文献の間でも報告が異なるが、[Li: 2ppm、B: 500 ppm]と比べ[Li: 3.5 ppm、B: 1800 ppm]の場合にPWSCC感受性が僅かに高まるという報告もあり^[1,2]、本研究のデータはこれらと整合している。

[1] R.J. Jacko, et al., Proceedings of Fontevraud 2 (1990) 250-257.

[2] N. Ogawa, et al., Nuclear Engineering and Design 165 (1996) 171-180.

トピック1のまとめ

<u>目的</u>

▶ PWR1次冷却水のLiOHをKOHで代替した際のPWSCC発生感受性の評価

<u>方法</u>

- ▶ Ni基X-750合金を試験片とした高温水中での定荷重試験
- ▶ Li 2 ppm相当 (サイクル中期想定) とLi 3.5 ppm相当 (サイクル初期想定) のモル濃度条件でLiOHをKOHを比較

<u>結果</u>

- ▶ KOHを含む水質環境でも、粒界型SCCの挙動に差がないことを明らかにした
- ▶ KOHを含む水質環境でも、PWSCC発生感受性に変化は認められないことを明らかにした

- 導入
- トピック1 (LiOHをKOHで代替した際の影響)
- ・トピック2(溶存水素濃度の影響)
- まとめと今後の課題

各トピックに関連する既発表資料

トピック1

- The Proceedings of the International Conference on Nuclear Engineering (ICONE) 30 (2023) No.1017.
- Mechanical Engineering Journal 11 (2024) No.23-00317.
- 日本原子力学会2024年秋の大会 (2024)発表番号1M05.

トピック 2

- Corrosion 78 (2022) 885-893.
- Journal of Nuclear Science and Technology 61 (2024) 397-402.

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

背景:1次冷却水の溶存水素(DH)とその濃度

- 水の放射線分解で生じる酸化性化学種により腐食電位が上昇することを防ぐため、DHが添加されている。
- 放射線分解による水素発生量に関する1956年の報告(図1)をもとに、DH濃度の下限は15 ml/kgとされ、 通常30 ml/kg程度で維持されている。
- ・ 図1のデータは低温(60℃)での試験結果で、DHの必要濃度を過大評価していると考えられている。例えば 2004年の照射環境中の試験では、DH濃度は5 mL/kg程度で十分との報告がある。

図2. Studsvik R2 reactorのINCA loopでステンレス鋼の腐 食電位に対するDH濃度の影響を評価した瀧口らの結果 [2]

E.J. Hart, Proc. Int. Conf. Peaceful Uses Atomic Energy (1956).
H. Takiguchi, Journal of Nuclear Science and Technology 41(2004) 601–609.

MITSUBISH

溶存水素(DH)濃度低下がPWSCC発生を抑制することが知られている

トピック2の目的と試験条件

MITSUBISHI

- ・ LiOH環境同様にKOH環境で DH濃度低減がPWSCC発生を抑制することの検証を目的とした。
- トピック1で紹介した定荷重試験に続けて、KOH添加条件でDH濃度をパラメータに試験した。

	Run No.	pH調整剤 アルカリ種 モル濃度			溶存水素 (DH) 濃度 (ml/kg)			試験 時間 (h)
トピック1	1	Li			30		1000	
(Li vs. K)	2	К		Li 2 ppm相当 (K: 11 ppm)		30		1000
トピック2 _ (DH濃度)	3	К				45		1000
	4	K				5		2510

[共通条件] 温度: 360°C、溶存酸素濃度 ≦ 5 ppb、ほう酸濃度: 500 ppm as B

実験結果

- DH: 30 ml/kgでは8本、DH: 45 ml/kgでは6本が破断し、破断時間に顕著な差はない。
- DH: 5 ml/kgでは、2510時間の試験期間内に試験片の破断が認められなかった。

	Run 2 DH: 30	破断
\square		破断無 (試験終了)
٠	Run 3 DH: 45	破断
\diamond		破断無 (試験終了)
Δ	Run 4 DH: 5	破断無 (試験終了)

DH濃度5 ml/kgの水質でPWSCC発生感受性が大幅に抑制されたと評価
KOH水質でのPWSCC発生時間のDH濃度依存性はLiOH水質での既往知見と同様

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

DH濃度低下がPWSCC発生を抑制する機構の考察

MITSUBISH

- DH濃度が異なる試験水(LiOH水質)に浸漬した600合金製の試験片の断面を観察した。
- DH濃度5 ml/kgでは、粒界酸化(PWSCC発生の前駆現象^[1])が比較的短い。事前に各試料50か所以上の 粒界をFE-SEMの反射電子像で観察した結果からも同様の傾向が確認されている。
- 5 ml/kgが相対的に酸化性であることを考慮すると、合金表面に保護的な皮膜が形成し、粒界酸化に対するバリア として機能したと推測される。

DH: 5 ml/kg

図.DH濃度が異なる試験水に浸漬した600合金製試験片断面の酸素分布(STEM-EDS像)

電気化学測定による表面皮膜の評価方法

- DH濃度5, 30 ml/kgの二試料について、逆U曲げ試験片を作用電 極とし、皮膜の電気化学的特性を調べた。
- 電気化学インピーダンス分光法によって、皮膜の電気抵抗を評価。
- モット・ショットキー測定によって、酸化皮膜の欠陥密度を評価。

<u> 共通条件</u>

作用電極:供試後のRUB試験片の頂部 対極:カーボン電極 参照電極: Ag/AgCl 測定溶液: 0.1 M Na₂SO₄水溶液(室温, 非脱気)

電気化学インピーダンス分光法

電位 : OCP(開回路電位) 電圧振幅: 10 mV 周波数 : 100 kHz ~ 0.01 Hz

モット・ショットキー測定

電圧振幅:10 mV 周波数 :1 kHz 印加電圧:1 V ~ -0.8 V (vs. Ag/AgCl)

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

作用雷極 対称 参照電極 皮膜

-ティ

MITSUBISHI

インピーダンス測定の結果

- ナイキスト線図(図1)に対して図2の等価回路を仮定してカーブフィット解析した。
- DH濃度5 ml/kgの内層皮膜の電気抵抗(R₂)は、DH濃度30 ml/kgの場合よりも約10倍高かった(表1)。

DH濃度5 ml/kgの場合の方が内層皮膜の電気抵抗率が高い

モット・ショットキー測定の結果

- N型とP型半導体に対する印加電圧とキャパシタンスの関係式は右の通り。モット・ショットキープロットの傾きから欠陥(ドナー、アクプタ)の密度を評価できる^[1]。
- カチオン欠陥及びインタースティシャルのアニオンはアクセプターであり、逆にインター スティシャルのカチオンや酸素欠陥はドナーである。
- 図1のモット・ショットキープロットの傾きから欠陥密度を評価した結果が表1である。

© MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

[1] 水流徹、「腐食の電気化学と測定法」、丸善出版(2017).

トピック2のまとめ

<u>目的</u>

2.0x10

- ▶ ①KOH環境におけるPWSCC発生感受性のDH濃度依存性
- ▶ ②DH濃度低下がPWSCC発生を抑制する機構

<u>方法</u>

- > ①Ni基X-750合金を試験片とした高温水中での定荷重試験
- > ②浸漬後の試験片に形成した酸化皮膜の分析

<u>結果</u>

▶ ①KOH水質でのPWSCC発生時間のDH濃度依存性はLiOH水質での既往知見と同様

▶ ②DH濃度の低い水質でバリア性の高い酸化皮膜が形成することが示唆された。

MITSUBISH

• 導入

目次

- トピック1 (LiOHをKOHで代替した際の影響)
- ・トピック2(溶存水素濃度の影響)
- まとめと今後の課題

まとめと今後の課題

<u>まとめ</u>

- PWSCC発生に対する水化学の影響として、KOH適用および溶存水素(DH)濃度変更に関する研究例を紹介した。
- 試験条件の範囲では、KOHを含む水質環境でも、PWSCC発生感受性に変化は認められない ことを明らかにした。また、KOH水質でのPWSCC発生時間のDH濃度依存性はLiOH水質での 既往知見と同様であることを確認した(DH濃度低減がPWSCC発生を抑制)。

今後の課題

- 特にKOH影響については、実機事象に対して大幅に加速条件(X-750合金非整合熱処理材、 360℃など)でのスクリーニングの位置づけである。今後、よりマイルドな条件(600合金の使用 等)も含めたデータ拡充が課題である。
- 水化学変更はPWSCC以外の観点でも考慮が必要である。KOH適用に関しては、EPRIが先行して多面的な評価を進めており(実機トライアル計画含む[1])、この動向もウォッチしながら、総合的に適用性を評価することが求められる。

K. Nigmatullina, et al., "Potassium Hydroxide for Western-Design PWRs: Plans for a Three-Cycle Monitored Campaign at TVA Sequoyah", Proc. of NPC2023 (2023)

