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This report summarizes the environmentally assisted cracking data, experimental and analytical
modeling of crack chemistry, and fundamental understanding and prediction of the effects of water
chemistry on crack growth in high temperature BWR water. Corrosion potential is shown to be of
fundamental importance, in that it properly accounts for the varying crack growth response to a range
of oxidant and reductant concentrations. Since cracks and crevices create a deaerated, low potential
environment, an elevated (external) corrosion potential creates a difference in potential from crack
mouth to tip which causes anion concentration within the crack, as well as pH shifts (often acidic). A
potential gradient is not essential to high crack growth rates since they can be observed in fully deaerated
water if, e.g., the environment is sufficiently acidic. Thus, most cracking “thresholds” (e.g., threshold
potential) are not absolute, but applicable only to a specific set of material, water chemistry, and loading
conditions.

The role of anion specificity appears to be primarily related to the ability of an anion to shift pH
within the crack since, e.g., SO2" provides the charge balance necessary to support the elevated HY
activity which defines acidity. Shifts to high pH are also possible and deleterious; in this instance, cations
(e.g., dissolved species such as Ni2+ or impurities such as Nat) are necessary to provide charge balance
for the excess OH-. The thermodynamic and kinetic stability of species in the deaerated crack is important
since, e.g., chromate can reduce to chromia. Complexing may also occur. In certain pH and potential
regimes, repassivation can be impeded by sulfide formation and adsorption, both in high alloy and low
alloy materials.



The crack chemistry that forms interacts with the crack tip material to cause a specific crack growth
rate. Thus, identical crack growth rates can be achieved in, e.g., non-sensitized stainless steel as in
sensitized stainless steel if a somewhat more aggressive water chemistry is used. The crack chemistry
issues are similar for high alloy (304/316 stainless steel and Alloy 600/182/82) and low alloy / carbon
steels, although the latter are strongly influenced by dissolution of MnS in the crack. The crack growth
response of these BWR structural materials varies, although their sensitivity to water chemistry is

strongly a function of Cr content.
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Specific Anion and Corrosion Potential Effects
on Environmentally Assisted Cracking in 288°C Water

Peter L. Andresen

Mechanism of Crack Advance

The slip oxidation mechanism is widely recognized as providing the best quantitative explana-
tion of environmentally assisted crack advance in ductile alloys in hot water [1-5]. In this
mechanism crack advance is related to dissolution (separated anodes and cathodes) or (direct
chemical) oxidation reactions at the crack tip where a thermodynamically stable oxide is rup-
tured by increasing strain in the underlying matrix (Figure 1). The film rupture rate is related to
the strain rate in the metal matrix, which is controlled by creep processes under constant load or
applied strain rates under monotonically increasing or cyclic load conditions. Equation 1 relates
the average crack velocity, V, to the crack tip strain rate, £, where A and n account for the
material and environment at the crack tip:

V, = A (6q)" 1)

Various important issues have been discussed previously [1-5], such as (1) the limits to the vali-
dity of this relationship, e.g., at high crack tip strain rates (=1072 s™!) where a bare surface is
continuously maintained; (2) the contributions of the mechanical component of crack advance
under cyclic loading; (3) the effects of crack blunting and crack branching, etc. The model has
been quantified for the steady state and transient compositions of the environment at the crack
tip as a function of the conditions in the bulk (external) solution; the oxidation rates for the
material/environment system expected at a strained crack tip; and the oxide fracture strain and
the crack tip strain rate, defined in terms of engineering parameters such as K, AK, R, frequency,
etc. These issues have been discussed in detail elsewhere for stainless steels [1-5], low alloy and
carbon steels [1-8], ductile nickel alloys [2-4,9-11], and irradiated stainless steels [12-13]. Addi-
tionally, short crack behavior and the transition to long crack behavior [14], concerns for crack
chemistry similitude [14], treatment of thickness- and time-varying properties, and treatment of
distributions in properties and statistical approaches [1-13] have also been addressed. Finally,
the validity and practical use of a prediction model has been summarized for various materials
and components [1-14].

Mechanism of Water Chemistry Effects on Crack Advance

The result of predictive modeling is the ability to accurately account for the isolated, individual
effects, e.g., of stress intensity (Figure 2), corrosion potential (Figure 3), and solution conduc-
tivity (Figure 4), as well as their interactions (Figure 5). These figures all show pronounced
effects on environmentally assisted cracking in stainless steel of water chemistry; similar effects
are observed in nickel-base alloys (Figures 6 and 7). If the effects of water chemistry and
material condition are not accounted for, there is an enormous spread in the data (Figure 8).
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These laboratory observations on the importance of water chemistry are also reflected in
incidence of stress corrosion cracking in plant components (Figures 9 and 10).

The effects of various water chemistry parameters on environmentally assisted cracking can be
understood in terms of the crack chemistry (primarily pH) and the contribution to ionic mass
transport in the crack of variables such as corrosion potential, conductivity (anion activity), flow
rate, etc. (Figure 11). The steady state and transient crack chemistry can be determined in terms
of the competition among the three components of liquid mass transport: ordinary diffusion,
potential driven ion migration, and convection:

Ji = _Di VC] - Zi].liFCi V¢ + Ci -V (2)

where J; is the flux, D is the diffusion coefficient, C; is the activity, Z; is the charge per ion, L is
the ionic mobility, F is Faraday’s constant, V¢ is the potential gradient, and V is the velocity
(convection) field.

The effects of differences among iron- and nickel-base structural alloys on these mass transport
processes are small, since they often exhibit similar corrosion potential behavior. For a given
crack chemistry, the crack growth rate varies with Cr content (and other parameters), as will be
discussed later. Also, the MnS inclusions in low alloy and carbon steel dissolve and have a
strong influence on the crack chemistry and crack growth rates. The role of various parameters
in creating crack chemistry and influencing environmentally assisted crack growth rates is sum-
marized below.

1. Corrosion potential is known to be a more fundamental parameter than oxidant/reductant
concentrations, since it properly accounts for the wide ranging response to different oxidant and
reductant concentrations (Figure 12), including under irradiated conditions. This is demon-
strated most clearly in the crack growth rate data on specimens coated or alloyed with noble
metals [15] (Figure 13) where the changes in growth rate parallel the shifts in corrosion poten-
tial, not the dissolved oxygen concentration.

Note that the term electrochemical potential is occasionally used to represent the corrosion
potential. A corrosion potential is a mixed potential representing a kinetic balance of 2 or more
anodic and cathodic reactions. An electrochemical potential is for a single, half cell reaction
(e.g., O, + 2H,0 + 4e¢™ = 40H"), and can represent the standard potential for a single reaction,
the reversible potential (i.e., including the effects of temperature, fugacity and activity of various
species, etc.), and polarization behavior (e.g., from activation (Tafel) or concentration polariza-
tion of a reaction).

2. Potential gradient in the crack. Since dissolved oxygen is very efficiently reduced in cracks
and crevices in high temperature water, a low potential, deaerated environment exists (even in
high irradiation fluxes). This creates the difference in potential from crack mouth to tip that
causes anion concentration, as well as pH shifts (often acidic), within the crack. Estimates from
crack simulation experiments (Figure 14) and analysis of cracking data (in which the tradeoff
between dissolved oxygen and conductivity is evaluated) show that in reasonably pure water the
crack tip anion concentration is increased by =30X at a corrosion potential of =0 Vg, (the crack
tip potential in water of at least moderate purity (<1 puS/cm) is = —0.5 Vg, ):



Ad
Cet = Cext * (10) 04 = Cext - (316)A¢ G)

where the external anion activity (solution conductivity), Cex, is increased to crack tip anion
activity, C, condition by a factor that is exponentially related to the potential difference, A¢,
from crack mouth to tip. Material dependencies among iron- and nickel-base alloys are gen-
erally small, since the A¢ values are similar.

This interaction between the external (crack mouth) corrosion potential and the external solution
conductivity to create a specific crack chemistry has also been demonstrated in crack growth
measurements. These analyses rely on the realistic assumption that the observation of similar
crack growth rates (under identical loading conditions) implies similar crack chemistries. In
fully deaerated (e.g., sulfate) environments, accelerated crack growth rates (equivalent to those
in aerated solutions) can be achieved if the impurity level is elevated by 20 to 50X above that
used in the aerated tests (Figures 15 - 17).

Thus, the rate at which cracks grow is controlled by the crack chemistry not, e.g., by the external
potential per se, and a given crack chemistry can be achieved by different combinations of
potential and conductivity; i.e., a high potential, moderately low conductivity condition can give
the same crack chemistry as a very low potential, but high conductivity environment.

Another way to view this interaction is that lower corrosion potentials not only decrease the
crack growth rates but also provide an increasing tolerance to impurities. For example, Figure
18 shows no increase in growth rate at 10 uM H, SO, (8.9 uS/cm) at a corrosion potential of
—0.5 Vge; this is a dramatic increase in tolerance to impurities compared to the pronounced
effect of much lower H,SO,4 concentrations shown in later figures (e.g., Figures 26 and 28).

This, coupled with the observations of high growth rates in deaerated water presented above,
provides evidence that crack tip dissolution reactions are primarily coupled to local cathodic
reactions, not to the cathodic oxygen reduction reactions at the crack mouth, since this would
require than the ionic dissolution current (e.g., Ni?* and OH™) flow over the entire length of the
crack. While ionic currents clearly flow in the crack and cause a more concentrated, pH-shifted
chemistry, there is no requirement that crack growth be limited to or directly controlled to a
highly physically separated cathodic reaction site. Additionally, in the high resistivity crack
solution, the amount of ionic current that would have to flow to account for the full range of
observed crack growth rates would require very large potential gradients in the crack (on the
order of hundreds or thousands of volts). These concepts and observations contradict proposed
models of crack advance that are based on electrochemical reactions that are coupled from crack
tip to crack mouth [16].

3. The pH of the crack solution, not the anion activity per se, apparently controls the environ-
mental cracking response. While high crack growth rates can be achieved in fully deaerated
water provided the pH is shifted sufficiently (Figures 15 - 17), Kassner has shown that this is not
observed if neutral or slightly basic impurities (e.g., Na; SO4) are used [17-18]. This is expected
only if pH is important, since the sulfate activity is unchanged. Note that under aerated condi-
tions, neutral impurities can affect crack growth rate because, in addition to anion concentration,
the potential gradient causes acidification (or alkalinization). Kassner also showed that, in
buffered mixtures of borate and sulfuric acid, that intergranular cracking and high crack growth
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rates were observed if the solution was acidic, but as the borate to sulfate ratio was changed and
the pH increased, no intergranular cracking was observed (Figure 19).

While most emphasis has been on acidification, high crack growth rates can also occur if the pH
is raised (Figure 20). The effect of corrosion potential in concentrating OH™ in the crack is simi-
lar to any other anion. However, the net effect of a potential gradient in producing a high pH
crack chemistry is lessened by the potential driven migration of cations out of the crack. In the
presence of, e.g., Na, SOy, this causes acidification, since the Na* moves out of the crack under
the potential gradient and is displaced by a constant source of H* (from metal dissolution and
hydrolysis, i.e., Ni%* + 2H,0 — NiOH + 2H") in the crack. However, for an increase in pH to
occur, there must be a corresponding increase in the concentration of a non-H* cation to provide
charge balance for OH™, just as there must be a non-OH™ anion present for acidification to occur
(if only H* and OH™ are present, the solution remains at neutral pH).

Because the potential gradient acts to drive cations out of the crack, the ease with which the con-
centration of OH™ can be increased in the crack is more limited than for acidification. For
acidification, the potential gradient acts on anions (e.g., C1~ into the crack) and cations (e.g.,
Na™ out of the crack) to maximize the pH shift. However, for alkanization, the potential gradient
has counteracting effects; i.e., it drives OH™ anions into the crack, but drives the non-H* cations
(e.g., Na*, required to sustain an alkaline pH shift) out of the crack. Detailed analysis of this
situation must account for differences in mobility between the cations and OH™, as well as the
contribution of metal dissolution and metal ion solubility vs. pH (metal ions become more solu-
ble with increasing pH above a certain value, Figure 21).

4. Oxide solubility. The effect on crack growth rate of crack chemistry (pH) best correlates
with the effects on oxide solubility (Figure 21). In neutral water at lower temperatures, metal
oxide solubilities are not as low as at high temperature, and water chemistry effects are much
less pronounced below than above about 200°C [19], as will be discussed later. In addition to
explaining the effects of temperature, oxide solubility also explains the effects of increased crack
growth rate as the pH is either raised or lowered, since the oxide solubility increases in both

cases.

5. The role of anion specificity can be primarily related to the ability of a given anion to sup-
port pH shifts within the crack. Anions such as CI~ or SO3~ provide the charge balancing capa-
bility required for increased activity of H* (acidification). Anions such as nitrate and chromate
are not thermodynamically stable in the low redox potential environment in a crack (Figure 22),
and thus should not have an effect on crack tip pH or growth rates. This is observed for nitrate
(Figure 23), although it appears that moderate chromate levels (as additions or releases from
stainless steel surfaces) may affect crack growth rates (Figure 24). This may occur because of
kinetic limitations in reducing chromate to chromia as in sulfate environments, which should
reduce to HS™ at low potentials (in deaerated water), but apparently do not do so to any appreci-
able extent.

The anion specificity issue is complicated by other factors than thermodynamic and kinetic sta-
bility of species in the low redox potential crack. Chloride and fluoride are probably complex-
ing agents in high temperature water; when complexed, the effective ‘‘solubility’’ of metal
“‘ions’’ increases, despite the lack of an actual increase in metal ion activity, as would occur,
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e.g., from a shift in pH. Another complicating factor is the possible effects of oxidizing anions
(e.g., nitrate or chromate) on the corrosion potential. The buffering capability of species like
borate, phosphate, and carbonate must also be taken into account.

In certain pH and potential regimes, repassivation can be impeded or completely prevented by
sulfide formation and adsorption, both in high alloy (Figure 25) and low alloy materials [20].
This appears to be limited to higher pHs (and thus lower potentials) than is typical of BWR
operation, and correlates with the formation of S%~ (Figure 22).

Based on available crack growth rate data [1-10,17-19,21-29], the effects of sulfate (Figures 26
and 27) and chloride (Figures 28 and 29) can be considered of similar aggressiveness, while
fluoride (Figure 30), phosphate (Figure 31), and carbonate (Figure 32) are somewhat less so, and
chromate (Figure 24) even less so. Nitrate (Figure 23) appears not to be harmful. Non-ionic
species, such as silica (which ionizes in water only to about 1% [30]), have little effect on crack
growth (Figure 33).

6. The minimum anionic level that should have an effect on crack chemistry and growth rate is
related to the concentration of OH™ in neutral water (assuming the impurity is being added to
pure water). In 288°C water, the activity of OH™ is 2.34 x 10~® M. Under the action of a poten-
tial gradient, there will be a continuous migration of anions (OH™ and, e.g., CI7) into the crack,
(also cations out of the crack), and at steady state a counter-balancing flow of anions out of the
crack by ordinary diffusion (where the flux is a function of the anion activity gradient). Dissolu-
tion in the crack / crevice (even without crack growth) of iron- and nickel-base alloys in high
temperature water, followed by hydrolysis (Ni** + 2H,0 — NiOH + 2H"), provides a continu-
ous source of H* in the crack; thus (in moderately pure water) the OH™ which migrates into the
crack largely recombines with H' (although even in pure water, some is charge balanced by the
limited solubility of metal cations). Thus, much of the ionic current in the crack is carried
mostly by OH™ moving into the crack, and H* moving out of the crack; these species recombine
in the crack to maintain the dissociation constant of 288°C water of 5.5 x 107'2, and one of them
can increase in concentration only if some non-OH- or non-H” species exists to maintain charge
balance in the solution.

Even at low concentrations, non-OH™ anions (such as C17) migrate into the crack and are able to
provide charge balance for excess H*. To date, there has been no analytical modeling per-
formed to identify what this ‘‘threshold’’ anion concentration is, but it should be related to the
OH™ activity in water on the basis of ‘‘charge carrying capability’” (or normality - not molarity,
and certainly not ppb or conductivity). Crack micro-sampling techniques for direct determina-
tion of crack chemistry are just being developed [22], and are long overdue.

Crack growth observations [21-32] (Figures 26 - 35) indicate that impurity concentrations below
1077 N are important; this corresponds (Table 1) to 4.8 ppb sulfate (1077 N equals 0.5 x 107 M
H,S0,), 3.6 ppb chloride, and 2.0 ppb fluoride. More importantly, analyses of BWR component
data (Figures 9 and 10) show a strong effect of conductivity (specific anions were not measured)
on environmental cracking of various BWR components. While the response shown in Figure 9
suggests that cracking doesn’t occur at conductivities below about 0.2 uS/cm, it’s clear that
lower conductivity merely extends the time required for cracks to reach a specific, detectable
depth, as indicated in Figure 10.



7. Caveats to Anion Specificity and Minimum Anion Level. There are a variety of caveats
that must be recognized in evaluating the experimental data on the effects of impurities. First,
most experiments have been performed using SSRT specimens, which is an accelerated test that
can be insensitive to subtle impurity effects. Additionally, few experiments have been per-
formed under well controlled conditions, i.e., corrosion potential measured and constant during
the test and from test-to-test; unnotched specimens; excellent ‘‘background’’ water purity (the
effect of 10~7 N chloride is difficult to identify or interpret if the outlet autoclave water contains

1078 N of other impurities); etc.

Even with highly controlled water chemistry and using CT specimens instrumented for continu-
ous, high resolution crack monitoring, evaluation of impurity effects is complicated by the ability
to reproduce the corrosion potential and perhaps subtleties of solution chemistry, as well as the
resultant crack growth rates. In particular, the crack growth rate of highly susceptible (e.g., sen-
sitized type 304 stainless steel) in pure water at typical BWR corrosion potentials (e.g., 0 to
+0.15 Vg,e) can be particularly difficult to reproducibly establish. Andresen has observed that in
ultra high purity water (i.e., <0.07 pS/cm outlet conductivity), the crack growth rate can be
unaffected by potential (at least between —0.5 Vg, and = 0.1 V) in some instances (Figure
36), but in other cases (even on nominally identical materials), the crack growth rate can
increase significantly on shifting from —0.5 Vg, to = 0.1 Vg, (Figure 37).

In one instance careful studies were performed to evaluate this phenomenon, and Andresen
found that fairly small changes in water chemistry and corrosion potential could give rise to
moderately large changes in crack growth rate, especially if sufficient time was given for the
higher rate to appear and stabilize (Figure 37). Apparently, the potential gradient causes the
crack solution pH to increase with time, causing higher crack growth rates; in ultra high purity
water, acidification is not possible. This suggests that some of the earlier work on impurity
effects [21] may over-state the effect of impurities on crack growth rate. It also makes interpre-
tation of the existing data and the specification of optimal experimental procedures difficult.

This ambiguity applies primarily to susceptible materials like sensitized type 304 stainless steel
and perhaps sensitized Alloy 600 and Alloy 182 weld metal, since relatively small changes in
crack chemistry are required to influence crack growth. No similar difficuities were observed for
non-sensitized type 304/316 stainless steel [21,22], where crack growth rate effects are only

observed at moderately high conductivity (Figures 27 and 29).

8. Transient response to shifts in impurity level is also important since changes in the solution
conductivity in operating plants typically represents the single largest variation among plant
operating parameters that control environmental cracking. If an anionic impurity is introduced
into the external solution, it will move into the crack via ordinary diffusion and potential-driven
migration according to Equations 2 and 3. Under typical BWR conditions, the extent of its con-
centration in the crack is limited to 20 to 50X (Equation 3), as discussed previously.

Both experimental measurements and analytical modeling confirm that this process is reversible,
1.e., that if the impurity is removed from the external solution, its concentration in the crack will
decrease to zero (except perhaps for chemical entrapment or incorporation into the oxide films).
If the corrosion potential is also decreased, a rapid decrease in impurity concentration in the
crack and in crack growth rate is observed (Figures 26 - 32). If the corrosion potential is
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maintained constant (as is typically the case), then the diffusion of the impurity from the crack is
slower, and the crack growth rate decreases more slowly. Other examples, and a more detailed
discussion of this issue, are presented in references [1-5,30,31]. This has also been observed in
specimens exposed to BWR recirculation water; an example is shown in Figure 38.

Thus, elevated solution conductivity does not cause a permanent increase in crack growth rate,
although it does have a short term effect that persists longer than the external conductivity tran-
sient (the time required to return to the original crack growth rate is longer than the time
required to achieve an elevated crack growth rate). If particularly severe conductivity transients
occur early in life (in one instance, to 50 pS/cm), its effect on cracking becomes quite pro-
nounced relative to its effect on average plant conductivity (Figure 9), since cracks can nucleate
early in life and grow to depths where relatively high stress intensities exist that can cause con-
tinued growth at moderate rates after the conductivity decreases.

9. Temperature has a strong effect on environmental cracking (Figures 39 and 40) [19], and
evaluation of the literature data shows that impurity effects are particularly pronounced above
=150 to 200°C. This corresponds to the temperature where the temperature activated response
of crack growth deviates from linearity, with the crack growth rate in very pure water peaking at
=150 to 200°C, then decreasing precipitously above 250 to 280°C. This has been attributed to
the increasingly dominant effect of (low) metal oxide solubility with temperature. Indeed, if the
water chemistry is sufficiently poor (so that oxide solubility is no longer a limiting factor due to
the acidify of the crack tip solution), the apparent activation energy of =10 kcal/mole observed
at lower temperature extends to temperatures above 300°C (Figure 40).

10. ““Thresholds’’. The broad use of the concept of a *‘threshold’’ is misleading because these
values are inter-dependent values which are not absolutes, but apply only for a very limited,
specific set of material, water chemistry, and loading conditions. For example, a commonly used
threshold potential of —0.3 Vg, clearly does not apply if a sufficient high concentration of acidic
impurity is present (Figures 15 - 17).

11. A material - environment interdependence exists, in that a specific crack chemistry and
crack tip material combine to cause a specific crack growth rate. For example, identical crack
growth rates can be achieved in, e.g., non-sensitized stainless steel as in sensitized stainless steel
if a somewhat more aggressive water chemistry is used (Figure 4, also Figures 26 - 29).
Expressed differently, the tolerance to impurities changes with material; in particular, higher Cr
level (especially above =18%) give a greatly increased tolerance to impurities (Figure 41). This
is particularly clear when comparing the crack length vs. time response of sensitized (Figures 26
and 28) vs. non-sensitized (Figures 27 and 29) stainless steel. Thus, the combination of more
resistant (e.g., non-sensitized and/or higher Cr) materials and the shift to lower corrosion poten-
tials can greatly increases the tolerance to BWR impurities.

The crack chemistry that forms under specific water chemistry conditions is apparently not
strongly influenced by the type of material (sensitized and non-sensitized stainless steel, nickel-
base alloys and weld metals, or carbon and low alloy steels), since they exhibit similar corrosion
potentials (both inside and outside the crack) in high temperature water, and the mass transport
processes and kinetics are identical. The subsequent crack growth rate response varies with
material, and appears to vary most strongly with the Cr content of the material. Thus, sensitized
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type 304 stainless steel and sensitized Alloy 600 or 182 weld metal exhibit similar crack growth
rates and sensitivity to water chemistry, while non-sensitized type 304/316 stainless steel, non-
sensitized Alloy 600, and Alloy 82 weld metal are less susceptible under the same conditions.

12. Crack Initiation vs. Crack Growth. There is very little data on crack initiation, per se, in
high temperature water. Indeed, it is recognized that crack initiation is inherently linked to an
arbitrary value of crack detectability, which might be 10 to 15% of wall thickness for ultrasonic
inspection, to perhaps a 0.1 mm by periodic visual examination, to about 1 to 10 um by continu-
ous potential drop monitoring. Since long crack / crevice chemistries develop even in very short
cracks [14], the behavior of even very small cracks can be similar to long cracks. Much of “‘ini-
tiation’’ data were obtained by slow strain rate testing, where both initiation (short crack) and

crack growth are important.

Andresen [33] performed interrupted SSRT experiments on sensitized stainless steel, and
observed that strain- or time-to-crack initiation was lower in acidic environments than in neutral
or slightly basic environments (Figure 42). This is consistent with the crack growth data (dis-
cussed earlier, e.g., Figure 19) in that pH is important; in the absence of an acidification (or,
more generally, pH shifting) mechanism (as would be the case if no crack exists), the crack
growth data also show little or no effect of neutral or slightly basic impurities (e.g., Na; SOy, but
do show an effect of acidic impurities (e.g., H;SOy4). Note that since oxide rupture controls
environmental crack advance, initiation and growth can occur by the same processes, although
rates of oxide rupture and the local chemistry vary.

The effects of exposure to aggressive chemistry, especially early in life, can be very significant.
Figure 9 shows that the incidence of cracking is much higher (than indicated by using average
conductivity) in instances where large conductivity transients occurred. Similarly, Figure 43
shows that exposure to impure water shifts the initiation of cracking by many order of magnitude
in time.

13. Mechanical loading controls environmentally assisted cracking by altering the rate at
which the protective oxide is ruptured at the crack tip. Formulations have been developed to
relate the applied strain rate in SSR tests, stress intensity in SCC tests, and stress intensity ampli-
tude, frequency, and load ratio in corrosion fatigue tests [1-13]. One important influence of vari-
ations in loading is that the difference in response (or factor-of-improvement) observed for
changes in material or water chemistry will be dependent on the loading conditions. Figure 2
shows the divergence at low stress intensity for difference water chemistry conditions, which
would apply equally well for differences in material condition. Figures 44 and 45 show the
differences in factor of improvement for different loading conditions and for different changes in
water chemistry.

14. Application of Laboratory Data to BWRs. One important issue relates to the applicability
of laboratory data to plant components and exposures. As experimental procedures have
improved, most laboratory data can be considered very representative of plant response. Addi-
tionally, predictive models provide methods for handling the growth of cracks through complex
residual stress profiles (e.g., in welded components), as well as the time-varying effects of water
chemistry, fluence, etc. [1-13]. The single largest difference is in the area of flow rate, where
very few laboratories reproduce the high flow rates that exist in many locations in BWRs. This

8



has two primary effects. First, high flow rates can significantly affect the corrosion potential in
the low oxygen regime. At low flow rate, the stagnant boundary layer at the surface of a metal is
comparatively thick, and the mass transport of oxidants to the surface is lower than at high flow
rate. Thus, e.g., the conditions under which low corrosion potentials are achieved in the labora-
tory can be different than in-plant. This concern applies primarily to the lower corrosion poten-
tial regime (e.g., < 0 V), and results in non-conservatism in the laboratory data.

The second effect of high flow rate is on crack chemistry. When properly oriented relative to the
crack, external fluid flow may have a large effect on the crack chemistry via convective flushing.
This has been shown most dramatically in low alloy steels (Figure 46), where the sulfur-rich
environment created by dissolution of MnS in the crack is removed at high flow rate. Of course,
in this case the effect of high flow rate is exaggerated by the geometry of the crack (CT speci-
men with 3-sides of the crack open to the environment).

Basis for Water Chemistry Guidelines

The knowledge of crack chemistry and the resultant environmental cracking susceptibility is
incomplete; accordingly, establishing guidelines for plant operation is complex, and existing
guidelines [35,36] require updating as new insights and data become available. However, it is
possible to establish sensible guidelines based on reasonably accurate knowledge of the mechan-
ism of impurity effects coupled with observation of crack chemistry and crack growth rates in
the laboratory and field.

1. Guidelines should be based on the concentration in normality of the (anionic) species,
since this is a measure of their charge-carrying and charge-balancing capability. Specification
in terms of ppb or conductivity may be more convenient, but this should be done for individual
anions after accounting for their differences in atomic weight and/or mobility. When using a
conductivity-based specification, it is also crucial to differentiate between the acid and salt forms
of the impurity, since the mobility of H* vastly changes the conductivity for a given impurity
concentration (Figure 47).

In attempting to balance the deleterious effects of impurities with the uncertainty in the observed
data (and achievability in a plant), my preliminary recommendation for steady state operation
for sensitized type 304 stainless steel or Alloy 182 weld metal under normal water chemistry
conditions (= 0.1 V) is 1077 N (total) for sulfate (4.8 ppb) plus chloride (3.6 ppb), and perhaps
an additional 2 x 1077 N for the total of fluoride (3.8 ppb), phosphate (19.2 ppb, assuming
H,PO%), and carbonate (12.2 ppb, assuming HCO3). We have no basis for concern for nitrates
up to 100 ppb (0.683 uS/cm HNO3) [22], nor for chromate levels less than about 12 ppb

(1x 1077 M, 0.10 pS/cm).

For potentials below = 0 Vi, the impurity levels can be increased by about a factor of two for
every 0.12 Vg, decrease in potential (based on Equation 3). Similarly, impurity levels about 3
to 5 times higher can typically be tolerated for non-sensitized stainless steel and Alloy 82 weld
metal (based on the observation of little or no enhancement in crack growth at about 25 ppb sul-
fate, or about 10 ppb chloride).



II. Guidelines should reflect the interaction between corrosion potential and anion activity
(as just indicated) in producing a crack chemistry, and the continuum in crack growth
response from very low in pure water, to progressively higher in more aggressive water chemis-
tries. For example, Figure 3 shows that there is no threshold potential or conductivity at which
cracking suddenly starts or stop. Figure 5 shows that a specific crack growth rate objective can
be met by combinations of corrosion potential, conductivity, and stress intensity. These data
support the use of weighted guidelines that acknowledge the interaction in corrosion potential
and impurity level, and the continuum in crack growth response. Figure 48 provides approxi-
mate response to impurities based on crack growth rate predictions.

III. Time-based response to impurities must be accounted for, as summarized earlier. The
effect of short term exposures to high conductivities can be very significant, as indicated in the
anomalously high incidence of cracking in shroud head bolts where there was exposure to high
conductivity transients (Figure 9). A time-conductivity weighting approach should be used
which penalizes conductivity values above 0.3 to 0.5 uS/cm, and severely penalizes conductivity
values above 0.7 to 1.0 uS/cm. Plant and laboratory data support an exposure limit of <1 day at
0.3 to 0.5 uS/cm, and an exposure limit of <8 hours to conductivity values above 0.7 to 1.0
pS/cm. Note that this should particularly apply to temperatures above 150 to 200°C, where the
effect of impurities is particularly high (Figure 39) [19].

Guidelines could perhaps be weighted so that deviations from the average conductivity (anion
activity) by more than 3X (or perhaps above =0.25 pS/cm, or = 5 x 1077 N) be penalized by a
time-weighted factor that recognizes the increased likelihood of developing a ‘‘long’’ crack (i.e.,
a crack greater than about 0.010 inch where an occluded chemistry and/or a moderate stress
intensity can exist). Without having considered it closely, some formula like (1(/0.2)2-(hours/4)2
might be appropriate, since it non-linearly penalizes both high conductivity and long time.

IV. Intentional impurity additions of, e.g., NaOH to reduce the conductivity associated, e.g.,
with chromate should receive careful consideration prior to implementation. Since sensitized
materials can crack in ultra high purity water (where the crack solution can only increase in pH),
the addition of non-H* cations to the system can only provide a greater opportunity for alkaniza-
tion. Nonetheless, there appears to be more flexibility or maneuverability in the high pH regime
than in the low pH regime. This may be true because the minimum in oxide solubility apparently
falls above neutral in high temperature water (Figure 21), and also because the alkanization pro-
cess is not as efficient as the acidification process (as described above in the section on ‘‘pH of
the crack solution’’).

Areas of Future Research

A variety of issues have been identified that point to the need for further research in the area of
water chemistry effects on environmentally assisted cracking. Water chemistry effects are par-
ticularly important, since they represent the easiest way to mitigate environmental cracking and,
in many cases, the only way.

A. Characterize the minimum levels of anionic impurities necessary to increase crack growth
rates for several materials, several impurities, and several corrosion potentials.

10



(1]

(2]

(3]

(4]

While the data are relatively unambiguous for non-sensitized type 304/316 stainless steel,
more work is certainly required for sensitized type 304 stainless steel and Alloy 182 weld
metal, and perhaps sensitized Alloy 600 and Alloy 82 weld metal. The response of low
alloy and carbon steel to impurity effects is much less well characterized than the other
materials.

The most critical impurities to evaluate include sulfate, chloride, and chromate, although
more data is needed for fluoride, phosphate, and others. It is critical to evaluate the
response as a function of carefully controlled, measured, and maintained corrosion poten-
tial. It is already very clear that the level of impurities that can be tolerated at < —0.3 Vgpe
is much higher than at 0.1 V.. Details of the difference in response in very pure water
between 0, 0.1, and 0.2 V. is not fully clear, and therefore the combined effects of
impurity levels at these potentials is less clear.

Clarify the possible advantages and problems of intentional additions of NaOH, LiOH,
ammonia, etc. to reduce crack growth rate.

Employ the emerging capability of crack solution micro-sampling to quantitatively
characterize the high temperature crack chemistry associated with different external anion
levels, corrosion potentials, materials, etc. Combine with analytical modeling to evaluate
the differences in response of the alkanization process (in pure water or, e.g., with NaOH)
and the acidification process, and their effects on crack growth.

Clarify the possible roles of kinetic stability of species like sulfate (HS™ should be stable
in the crack), chromate (Cr, O3 should be stable in the crack), nitrate (ammonia should be
stable in the crack), etc. Clarify the possible role of complexing in high temperature
water, as well as the effect of S2~, HS™, and other sulfur and non-sulfur species on repas-
sivation kinetics.
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28" DIA. SCHEDULE 80 304 PIPING
THEORETICAL VS OBSERVED I1GSCC PENETRATION
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Figure 10. Crack depth vs. operating time for weld sensitized, 711 mm (28 inch) diameter,

schedule 80 stainless steel piping (EPR = 15 C/cm?) in 288 °C water containing 200 ppb oxygen.
Data are from various BWR plants operating at the specified mean solution conductivity. Pred-
ictions account for the complex variation in residual stress vs. wall thickness and associated
stress intensity vs. crack depth/time [2,3].

DETERMINATION OF CRACK=-TIP ENVIRONMENT
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Figure 11. Schematic of a crack and the associated mass transport and thermodynamic criteria
which govern the crack tip environment,
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Figure 12. Corrosion potential/dissolved oxygen content relationships for unirradiated stainless
steel in water at 288°C.
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Figure 13. Crack length and corrosion potential vs. time for Pd-coated CT specimen c57.39g
showing a low corrosion potential and crack growth rate in 1 uM H, SO, (0.863 puS/cm) under
excess hydrogen. On changing to excess oxygen at 6124 hours, the corrosion potential and
growth rate increase dramatically; returning to excess hydrogen at 6244 hours causes the corro-
sion potential and growth rate to again drop.
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Figure 14. (a) Schematic of the Teflon® specimen used in the room temperature crack chemistry
simulation experiments. (b) The effect of potential field driven ion transport on the chloride
activity vs time for locations from the crack tip (probe #1) to mouth (probe #9) in 1-dimensional
experiments. For A¢ = 0.4 V, the anion activity at the crack tip is =10X, as expressed in Equa-
tion 3.
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Figure 15. The inter-relationship between corrosion potential and solution conductivity in estab-
lishing a crack tip anion activity is shown by comparing crack growth rates in aerated vs.
deaerated solutions. If the growth rates under two conditions are similar, then it is inferred that
the crack tip chemistries are similar. Each point represents a pair of datum obtained at similar
crack growth rates and loading conditions in 288°C water. Since perfect matches, requiring
identical crack growth rates under aerated and deaerated conditions, were generally unavailable,
the labels (e.g., 2.9X) indicate the ratio of the crack growth rate in aerated vs. deaerated solu-
tions. The arrows indicate where points would shift if the growth rate match were perfect.
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Figure 16. The effect of H,S04 additions on the crack growth rate of sensitized 304 stainless
steel tested in deaerated, 289°C water in slow strain rate experiments at 1 x 1076 s~1 [17,18].

28



Crack extension, microns

”00 + =0 +
Qbservation vs. Prediction Using Observation vs. Prediction Usin
ok Crack Tip Chemistry Model Crack Tip Chemistry Model 5
316NG SS ¢29 [S6c] In82 ¢32 [31c o s son |
K=33/23.1 MPa/m 2 ™1 K=33/26.4 M ao/m
604 R=0.7, 0.01 Hz g R=0.8, 0.01Hz
%004 E 1504
§
L. 23 2 uS/em
Q
‘5 1004 .1 u ’
0+ x XH2 in Ar H
58 To 40 pprmi O3 [ 10 uS/em
204 10 uS cm H S04 S
54
1004 1 uS/em
e!nmmnnnun‘nmmmm hmwnﬁmms&omum
Time, hours ] . Time, hours
(a) )

Figure 17. The crack extension vs. time response of (a) non-sensitized 304L stainless steel and
(b) Alloy 82 weld metal to changes in water chemistry showing elevated crack growth rates in
the non-sensitized material in deaerated water at high conductivities. This illustrates the inter-
relationship between solution conductivity and corrosion potential in creating a specific crack tip
solution chemistry and thus a specific crack growth rate. The straight line segments represent
predictions of crack growth rate behavior for the various condmons shown.
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Figure 18. Crack length vs. time for CT specimen c57.41x showing that accelerated crack
growth can be achieved at the thermodynamically lowest potentials (characteristic of fully
deaerated water, or catalytic surfaces in excess hydrogen) provided sufficient H, SOy is added.
This also shows that low corrosion potentials provide a large tolerance to impurities since, at
high corrosion potentials, effects on crack growth of =0.1 uM H, SOy are readily observed.
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Figure 19. Influence of the borate:sulfate mole ratio on the crack growth rate of sensitized 304
stainless steel tested in deaerated, 289°C water in slow strain rate experiments at 1 x 1076 s-!
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Figure 20. Crack extension vs. time for sensitized type 304 stainless steel (c53.38x & ¢53.43x)
in 288°C water showing the effect of various concentrations of OH™ as NaOH. .
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Figure 21. (a) The effect of temperature and pHy on the calculated solubility of iron oxide in
pure water containing 1 atmosphere Hj [32]. Solubility comparison at a constant pH (or for
solution of fixed composition) shows that, for pHy < 8, the solubility decreases with temperature.
(b) Experimental solubilities of iron and nickel oxides at 300°C and 780 mole/kg H, with least
squares fit plotted against pHjsoc, in contrast to pHy in (a). Compared to chromium oxide, the
solubilities of iron and nickel oxides are similar. In contrast to the calculated solubilities in (a), a
"plateau” is observed at = pHjsoc of 5 — 7, which sometimes is reported to span a larger pH

range.
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Figure 23. Crack length vs. time for CT specimens of sensitized type 304 stainless steel showing
the minimal effect of 100 ppb nitrate (as HNO3) on the crack growth rate in 288°C water.

33



o
~

250 v T T L : T L L L : L R L LE v ¥ L L : L2 T L) L] : L4 o
-Sensitized 304 SS 25 mm CT C38 ;
[ Constant Load K=33 MPa/m + Unload at 0.6
- R=0.5, 100s cycle every 10,000s 3
o 2076%H2 in Ar, 0.056 uS/cm Pure 105 >
s [104 — 218 [27] 1 <
P +0.4 .5
0 - " c
E 150l [Corrosion utlet 1035
e | Potential Conductivit ] ‘3_—
o 3 <]
@ | fope = | 10-2
c o 02 £
o 5 . 1.16 um/
% 100 200 ppb . Jo4
o To 0.15 uS/cm ] Q
X~ 24 ppb H2Cr04 in P ] -
9 - -~ 70 2
g L To 0.29 uS/em |{ =
504 4 58ppb H2CrO4 in :-—0.1§
i . ] B
b - c
Linear Regression T-0.2¢0
i Slope = 0.33 um/h Vshe = Vcuo — 0.275] ] o
e P WP BV A PRPIF PP R 3P
200 250 300 350 400 450 500 550
Time, hours
250 =Ty : T : ™ T = T VT : T : Trry : T 1T : T T : ™r rT : ™1 T Lan 1
F Sensitized 304 SS AJ9139 C49 [6x] ] 9
[ Constant K=33 MPa/m + F09 3
+ _R=0.5, 0.01Hz every 1000s ] .
o @0T6%H2 in Ar, 0.06uS/cm Pure Water . 798 5
5 [ 3 107 &
0 Linear Regression i -
£ - Slope = 0.82 um/h ] o
1907 oszoo%p/b 53 706
o | 10.508 uS/cm : .
‘@ 1.0 uM H2Cro4 To 6%ZH2 in Afio5 ¢
S [ UHP_Water : 3
% 1004 304 0
o I 1 3
X E_ -
:E:v 0.3 _.é,
4 3 +
50 i . utlet 1 0.2 _;5‘
: { Conductivity 1o €
: :F 'S)
o — ” i

lj:llll:IIll:llll:llll:llll:ll“:l ll:]lll:llll 0
1000 1050 1100 1150 1200 1250  1300- 1350 1400 1450 1500

Time, hours

Figure 24. Crack length vs. time for CT specimens of sensitized type 304 stainless steel showing
the effect of chromate (as H,CrOy) on the crack growth rate in 288°C water.
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Figure 24 continued.
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Figure 25. The effects of sulfide concentration on the excess anodic current density (metal disso-
lution rate) and slow strain rate behavior of Alloy 600 showing a steep threshold at =100 ppm
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Figure 26. Crack length vs. time for CT specimens of sensitized type 304 stainless steel showing
the effect of sulfate (as H;SO4) on the crack growth rate in 288°C water. Also, the factor of
enhancement as a function of H,SO, concentration for sensitized type 304 stainless steel. The
enhancement factor is computed by dividing the steady state crack growth rate in impure water
to that in pure water. The data represent an upper bound on the factor of enhancement since a
lower bound value for the crack growth rate in pure water was employed.
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Figure 26 continued.
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Figure 26 continued.
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Figure 27. Crack length vs. time for CT specimens of non-sensitized stainless steel showing the
effect of sulfate (as H,SOy) on the crack growth rate in 288°C water.
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Figure 28. Crack length vs. time for CT specimens of sensitized type 304 stainless steel showing
the effect of chloride (as HCI) on the crack growth rate in 288°C water. Also, the factor of
enhancement as a function of HCI concentration for sensitized type 304 stainless steel. The
enhancement factor is computed by dividing the steady state crack growth rate in impure water
to that in pure water. The data represent an upper bound on the factor of enhancement since a
lower bound value for the crack growth rate in pure water was employed.
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Figure 28 continued.
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Figure 29. Crack length vs. time for CT specimens of non-sensitized stainless steel showing the

effect of chloride (as HCI) on the crack growth rate in 288°C water.
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Figure 30. Crack length vs. time for CT specimens of sensitized type 304 stainless steel showing
the effect of fluoride (as HF) on the crack growth rate in 288°C water.
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Figure 31. Crack length vs. time for CT s
the effect of phosphate (as H3PO,) on the

pecimens of sensitized type 304 stainless steel showing
crack growth rate in 288°C water.
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Figure 33. Crack length vs. time for CT specimens of sensitized type 304 stainless steel showing
the effect of silica on the crack growth rate in 288°C water. High purity fumed silica was dis-

solved in water, where a very large fraction does not dissociate nor, therefore, contribute to con-
ductivity.

55



1x10 s

0,50.2 pem
é:=

EPR=2 C/c

NN e
R N leet
AN N AN W/. W m///V////V/E

AV

NS R =S
ZW///////V//@ WMWM,/,M//,/,//@

v,_,,,_,,”///%,/ NN @ R e — —
NI > odtH ANNNNNNN _
DR (ot NN POVt

AN L AN N ——

./://// AA/ ///” ////U f//, NN N .julthM}Ju,J

NN \ NS N .

y/o,w,////%///ﬂ,imﬂmu NNFoats]
=X N .14/1 RS ./A!/‘ // ../a "y ~ z/ —~—r— -
AR //ﬂ/,.///l A \
DN e O

AN
NN R
NN NN g wami N\ izt
NN A o SN

O%H ALiund HBIR

EPR « 2 C/em?
SIRAIN RATE
F=im0 'y’

o (= o [ Q o (=]
mu w « © -« o~ Y T l_ LI B A oum auany r Y -
(4) 3UNTIV4 oL 3L a 2 =

(,.8-W) 31VH HLMOYD MOovHo =2

racking of sensitized type 304 stain-
at 107%/s.

56

Figure 34. Effect of various impurities on stress corrosion ¢
less steel in 288°C water in slow strain rate tests performed
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Figure 36. Crack length vs. time for CT specimens of sensitized type 304 stainless steel where
no effect of corrosion potential shifts associated with a change from 0 to 200 ppb oxygen (= -0.5
0= 0.1 V) on the crack growth rate was observed in 288°C water. :
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Figure 36 continued.
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Figure 37. Crack length vs. time for CT specimens of sensitized type 304 stainless steel where
an effect was observed of corrosion potential shifts associated with a change from 0 to 200 ppb
oxygen (= —-0.5 to = 0.1 V) on the crack growth rate in 288°C water.
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Figure 38. The crack length vs. time response for a double cantilever beam specimen of sensi-
tized type 304 stainless steel wedge loaded to 27.5 MPaVm and exposed in a flange to BWR
recirculation water. Under otherwise constant conditions, the crack growth response during the
first 1000 hours is sensitive to solution conductivity transients. While these transients have short
term effects, the crack growth rate returns to a low level within =100 - 200 hours after the tran-

sient.
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EFFECT OF TEMPERATURE
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Figure 39. The effect of temperature on crack growth rate of sensitized type 304 stainless steel
and sensitized Alloy 600 in pure water with moderate impurity levels. In relatively pure water,
the crack growth rate decreases rapidly above =200°C, and this is the regime where water chem-
istry effects are particularly pronounced. While some differences among materials may exist,
scatter in the data and differences between data obtained under decreasing vs. increasing tem-
perature appear to dominate over difference heat-to-heat variations of sensitized stainless steel

vs. sensitized Alloy 600.
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Figure 40. The effect of temperature on average crack growth rate in pre-cracked, wedge
loaded, double cantilever beam specimens of (a) cold worked, high Mn “‘stainless steels’’
(X50MnCr185 is 18Mn-5.1Cr-1Ni-0.54C, intergranular cracking; X6MnCrN1818 is 19Mn-
18%Cr-0.7Ni-0.6N-0.06C, transgranular cracking), and (b) sensitized type 304 stainless steel
(intergranular cracking). In this more aggressive water chemistry, the crack growth rate tends to
increase monotonically with temperature, in contrast to Figure 39. Interpretation is complicated
by the range in dissolved oxygen (0.1 to 300 ppm), the effects of initiation on average growth

rate obtained by post-fracture visual examination, and the variation in corrosion potential and
PH in this activation energy plot.
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Figure 41. The relationship between the chromium content in “‘stainless steel’* and the solution
conductivity (as H,SO4) required to cause a 2X increase in crack growth rate above that
observed in high purity water. Variations in chromium content were achieved by using custom
melted, homogeneous alloys as well as by heat treating commercial type 304 stainless steel and
measuring the grain boundary chromium profile by analytical electron microscopy.
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Figure 42. The effect of impurities on crack initiation as measured by repeated interruption dur-
ing slow strain rate testing of sensitized stainless steel in 288°C water. Results correlated poorly

with impurity level (or solution conductivity), but show good correlation with (approximate) pH
at temperature.
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Figure 43. Effect of applied stress on intergranular stress corrosion cracking of creviced and
uncreviced sensitized Alloy 600 under constant load conditions in 288°C water. The curves
marked ‘‘Impure Water Creviced’’, ‘‘Pure Creviced’’, and *‘Pure Water Uncreviced’’ represent
long-term laboratory and in-reactor specimen data. The curves with data represent laboratory
data on several heats of sensitized Alloy 600 under a simulated, severe resin intrusion.
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Figure 44. Factor of improvement (ratio of crack growth rates in NWC to HWC) for sensitized
type 304 stainless steel as a function of the stress intensity and corresponding crack tip strain
rate [1-3].
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Figure 45. Factors of improvement associated with specific changes in (a) water purity or (b)
corrosion potential for specific loading conditions.
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Figure 46. The effect of solution flow rate on the crack growth rate of a CT specimen of a
medium sulfur low alloy steel tested in deaerated, 288°C water [32]. High flow rate causes
"flushing out" of the crack tip sulfur content resulting from dissolution of MnS in the crack.
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Figure 47. Relationships between ppm impurity addition, room temperature pH, and solution
conductivity. ‘
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Figure 48. The approximate response of sensitized type 304 stainless steel to impurities in
288°C water based on crack growth rate predictions. This provide some guidelines for the inter-
play between corrosion potential and impurity level, and show the continuum in crack growth
response.
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