日本原子力学会「水化学部会」第45回定例研究会

置換クロマトグラフィー法による リチウム同位体分離に関する研究

Fundamental Study on Isotope Separation of Lithium Isotopes by Displacement Chromatography

杉山貴彦
 名古屋大学大学院工学研究科
 総合エネルギー工学専攻

令和5年6月15日

はじめに

リチウムは,地表では,火成岩や塩湖かん水中に多く含まれ,海水中にもわずかに含まれる.リチウムは,ガラスや陶器の原料,二次電池の材料,医薬品など広い分野で使用されており,ますます希少性が高まると考えられる.

リチウムの安定同位体は⁶Liおよび⁷Liであり,その天然存 在比はそれぞれ7.5%と92.5%である.同位体濃縮されたリ チウムは,PWR冷却材のpH調製剤,DT核融合のブラン ケット材,溶融塩原子炉の溶融塩,中性子検出用シンチ レータなどへの使用が期待される.

本講演では,名古屋大学で行っているリチウムの同位体 分離に関する研究の概要を紹介する.

核融合炉におけるLiの消費量

トリチウム消費量の経験的推算式

$$C_T = 55.7 P_f f_d (g/年)$$

 $P_f : 核融合反応出力(MW)$
 $f_d : 設備稼働率(-)$

実用炉クラス
 $P_f = 2500 MW (1 GWe)$
 $f_d = 0.8$
 $C_T = 111400 g/年$
→ (年間約100 kg)

トリチウムとリチウムの質量数の比を乗じ、炉全体のTBRを1.1と仮定 すると、必要ならいの量は年間約250kg ※ただし、リチウムの使用効率、中性子やトリチウムの漏れ、トリチ ウムの回収効率を考えると、この数倍は必要と考えられる。

⁶Liの濃縮割合を90 %とし,天然存在割合7.5 %を考慮すると,同位 体分離処理量としては**年間約3 t (8 kg/日,6 g/min)**

世界の電力消費量 1000 MW級発電所 約2500基分 年間7500 t

リチウムの同位体分離法

方法	原理	特長	問題点
アマルガム法	リチウムアマルガムとリチウム化 合物水溶液との間の同位体交換平 衡を利用.	分離係数1.02~1.07. 工業化されている唯一の方 法.	水銀を使用する.
分子蒸留法	同位体間の蒸気圧の差を利用.	気相に ⁶ Liが濃縮. 分離係数1.05~1.08. 気相 10 ⁻⁴ Torr.	エネルギー消費が大. ス ケールアップが困難.
イオン交換法	イオン交換体と溶液の間の同位体 交換平衡を利用.	イオン交換体内に ⁶ Liが濃縮. 分離係数1.001~1.01. スケールアップが容易.	分離係数が小さい.
電気泳動法 (溶融塩法)	電場により ⁶ Liと ⁷ Liの泳動速度の 差を利用.	陰極側に ⁶ Liが濃縮.	エネルギー消費が大. 溶融 塩を使うため高温材料の 選定が困難.
溶媒抽出法	クラウンエーテル(有機溶媒溶液) と水溶液間の同位体交換平衡を利 用.	クラウンエーテル中に ⁶ Liが 濃縮. 分離係数1.01~1.06.	還流操作が困難. 薬剤が高 価. 分離係数が小さい. 工業化が困難.
グラファイトイン ターカレート法	グラファイトに対する ⁶ Liの選択 的インターカレート. Li-GIC内の ⁶ Liと ⁷ Liの移動速度の差の利用.	分離係数: 1.007~1.025	分離係数が小さい. スケールアップ、工業化 が困難.
リン酸ジルコニウ ムによるクロマト 分離法	リン酸ジルコニウムへLiを吸着さ せた際の、 ⁶ Liと ⁷ Liの同位体効果 を利用.	分離係数1.02~1.03	分離係数が小さい. スケールアップが困難.
電気化学的酸化還 元法	低融点金属(Sn, Zn, Ga等)へLi を電気化学的に挿入した際の、 ⁶ Liと ⁷ Liの同位体効果の差を利用.	分離係数1.002~1.02	分離係数が小さい. スケールアップが困難.

置換クロマトグラフィー法

置換クロマトグラフィー法は、溶離クロマトグラフィーと異なり、吸着帯の展開中、界面が広がらずに鋭い形状が保持される.このため、 展開とともに濃度が薄くなることは無く、分取目的に優れている.

Fraction collector

により測定

高分解能二重収束型質量分析器 Finnigan, MAT ELEMENT 分析可能範囲: 5~260 Da (amu) 解像度:R = 300, 3000, 7500 [M/ΔM]

	クリプタンド樹脂	陽イオン交換樹脂	
	Cryptand(2 _B ,2,1)	TITECH-H1 *	TITECH-H2 *
樹脂粒径(µm)	350	60	100
樹脂構造	ゲル型	ポーラス型(多孔性)	ゲル型
粒内拡散係数(cm²/s)	1.7x10 ⁻⁷	1.9x10 ^{-6 (1)}	5.2x10 ^{-7 (3)}
濃縮係数(-)			
HETP(cm)			

* 東京工業大学原子炉工学研究所試作 (1) H. Araki, Y. Enokida and I. Yamamoto, J. Nucl. Sci. Technol., **35** [10], 692 (1998)

(2) 岡本 倫明, 名古屋大学修士論文 (1997)(3) 小西 輝,名古屋大学修士論文

(1998)

測定結果

界面がシャープに形成されること、メタノールへの溶解度が高いこと、展開時に 沈殿を生成しないこと等を条件に、リチウム溶液と展開剤の組み合わせを実験的 に模索した. $CH_3COOLi - CH_3COOK$, LiI – KI, LiCl – $SrCl_2 \cdot 6H_2O$

 $CH_{3}COOLi \ 0.5 \ mol/l, \ v = 0.5 \ cm^{3}/min \qquad CH_{3}COOLi \ - \ CH_{3}COOK \ 0.5 \ mol/l, \ v = 0.5 \ cm^{3}/min$

図 Li濃度および同位体存在比測定結果

前端界面: ⁷Liが濃縮

後端界面:⁶Liが濃縮

基礎式と解析方法

溶液相の拡散移流方程式

$$\frac{\partial C_i}{\partial t} = E \frac{\partial^2 C_i}{\partial z^2} - u \frac{\partial C_i}{\partial z} - \frac{k_s a_v}{\varepsilon_v} \left(\frac{q_0 K_H^i C_i}{K_H^6 C_6 + K_H^7 C_7 + K_H^K C_K + C_H} - \overline{C_i} \right)$$

- 固相の吸脱着を表す式

$$\frac{\partial \overline{C_i}}{\partial t} = k_s a_v \left(\frac{q_0 K_H^i C_i}{K_H^6 C_6 + K_H^7 C_7 + K_H^K C_K + C_H} - \overline{C_i} \right)$$

 C_i :溶液相濃度, t:時間, E:分散係数, z:カラム内位置, u:線速度, k_s :物質移動係数, a_v :反応面積, ε_v :空隙率, q_0 :吸着容量, K_H^i :水素に対する選択係数, $\overline{C_i}$:吸着相濃度

- ⁶Li, ⁷Li, K, Hの4成分とした.
- 無次元化,規格化した後,有限差分近似したこれらの非線形 方程式をニュートン法を用いて数値的に解いた.
- 空間の差分では、拡散項を中央差分、移流項を風上差分し、 時間の差分では、クランクニコルソン法を適用した.
- タイムステップは、クーラン条件を満たす様に小さくした。

分散係数と物質移動係数の評価

解析方法と計算コードの妥当性評価

得られた分散係数と物質移動係数を用いて,長距離展開した場合について, 濃度分布の測定値と計算値を比較した.

平衡分離係数と濃縮係数

報告者 α 1.022 Taylor, Urey Dowex 50x10 1.0065 Gross 1.003~1.008 Session Dowex 50x12 1.0027 Blanco Dowex 50x2~24 1.0006~1.0038 Lee Diaion SK#1 1.000~1.006 Kakihana 1.0010~1.0055 Nikolaev TITEC-H1, TITEC-H2 M. Okamoto et al. 1.001~1.006 Cryptand (2B,2,2) 1.014 D.L. Hughes M.A. Bush et al. Cryptand (2B,2,2) 1.034~1.047 1.012~1.044 K. Nishizawa et al. 1.042 H.G. Spicer LOM-15C5 1.041 H.G. Spicer TOM-15C5 1.043 H.G. Spicer 1.024 H.G. Spicer 1.0085~1.045 S. Fujine et al. Cryptand (2B,2,1) 1.04 R. Mitani et al.

平衡分離係数の報告値

6Liの90%濃縮に必要な吸着帯の長さ

吸着剤の調製

大環状化合物を分散させた有機溶剤を多孔質シリカビーズ に含浸保持させて吸着剤を調整した.

材料

- Benzo-15-crown-5 (B15C5)化合物 (Merck Japan) 環径: 1.7 – 2.2 Å Li⁺のイオン半径: 0.59 (4配位), 0.76 (6配位)
- 多孔質シリカビーズ
 粒子径 : 60, 100, 250 μm
 比表面積 : 270 m²g⁻¹
- 有機溶剤(和光純薬, Sigma-Aldrich)
 <u>キシレン</u>, トルエン, ドデカン, シクロヘキサン, ヘキサン

手順

- 1. 0.1 gのB15C5を0.5 gのキシレンに溶解させた.
- 2. キシレンをアセトンで希釈した.
- 3. 希釈したキシレン溶液に5 gの多孔質シリカビーズを浸漬した.
- 4. 40°Cで減圧乾燥し, アセトンを揮発除去した.

クロマトグラフィー実験

実験装置

- 微量送液ポンプ
 東京理科機械, KP-12-13
- ステンレス鋼製カラム
 GLサイエンス, No. 6010-11045
 有効充填長: 250 mm
 内径: 4 mm
 吸着剤充填重量: 2 g
- フラクションコレクター 東京理科機械, DC-1500

手順

- 1. 吸着剤を多量のイオン交換水により再生した.
- 2. 0.05 mol dm⁻³のLiCl水溶液を0.25 cm³ min⁻¹の流量で連続供給した.
- 3. 流出液を0.1 cm³毎に分画採取した.
- 4. Li濃度を原子吸光光度計を用いて測定した.

クロマトグラム

HETP値の評価

HETP値の実験評価式

S. Fujine et al., Sep. Sci. Technol., 17, 1545 (1982).

ストークス-アインシュタインの式 $\overline{D} \approx D = \frac{kT}{6\pi\eta r_s} = 8.9 \times 10^{-6} \text{ cm}^2/\text{s} (20 \degree \text{C})$ k: ボルツマン定数 T: 液体の温度 $\eta: 水の粘度$ $r_s: リチウムイオンのストークス半径$ $d_p: 粒子直径$ Peclet数 Peclet数 $Pe = \frac{d_p \bar{u}}{\varepsilon_v E} = 0.5 (Re < 20)$ $E = 7.1 \times 10^{-4} \text{ cm}^2 \text{s}^{-1} (60 \ \mu\text{m})$ $1.2 \times 10^{-3} \text{ cm}^2 \text{s}^{-1} (100 \ \mu\text{m})$ $2.5 \times 10^{-3} \text{ cm}^2 \text{s}^{-1} (250 \ \mu\text{m})$

異なる粒径のB15C5吸着剤のHETP値

物質移動抵抗のHETP値への寄与率

プロセスの特徴と課題

核融合炉ブランケット材である6リチウムの同位体濃縮を目的として、置換クロマトグラフィー法の研究を行っている.これまで、吸着剤の開発、同位体分離実験、物質移動シミュレーションコードの開発を進めてきた.

この方法では, 原料の ウム6のモル分率 [-後端 供給と製品の抜き出しは 0.1 間欠的であり,抜き出し **由形成時** 前端 0.01 の諸条件が、製品の濃縮 度と濃度分布の再形成に 0.001 0 3 1 経過時間 大きく影響する.

供給抜き出しの割合と濃縮流の割合が分離性能に及ぼ す影響を数値シミュレーションにより評価した.

長距離展開に伴う濃度変化

カラム内径 8 mm, 陽イオン交換樹脂(TITEC-H1, 60 µm), 0.5 mol dm⁻³の酢酸Li溶液, 流量1.0 cm³min⁻¹, 吸着帯長さ10 cm

展開距離 12 mまで計算を行った.吸着帯界面は展開に伴って大きく広が らず,鋭い界面を保った.吸着帯後端に⁶Liが濃縮された.

長距離展開に伴う濃度変化

吸着帯内の濃度分布は,展開距離 12 mまででほとんど発達を終えて 指数関数的となり,それ以上展開しても分布は変わらなかった.展開 距離 11 mと12 mの濃度分布の相対変化は0.1 %未満となった.

供給抜き出し操作の概要

供給抜き出しに伴う濃度変化

供給抜き出しの割合と濃縮流の割合が 分離性能に及ぼす影響

$$\delta U = L \frac{\beta(\alpha - 1)\log_{e}\beta - (\beta - 1)\log_{e}\alpha}{\alpha\beta - 1}$$

L:濃縮流流量

- 供給抜き出し割合R_{EX}が0.4,濃縮
 流の割合θが0.55のとき,δUの最
 大値として12 μmol/hとなった.
- 分離パワーは、θに大きく依存せず、 R_{EX}に大きく依存した.
- 連続的に生産を行うためには、実際には物質収支により、θは概ね0.084以下に制限される.

⁶Liを90%濃縮する装置の概算

Θ=0.04のとき, Θ=0.08のとき,

吸着帯長さ 2.05 m 吸着帯長さ 3.56 m

設計条件

α	1.03	ユニットの分離係数
Z_F	0.075	供給流中『Liモル分率
y_P	0.90	製品流中 ⁶ Liモル分率
x _W	0.001	廃棄流中 ⁶ Liモル分率 (⁷ Liモル分率 = 0.999)

カスケード見積($P = 1 \mod b$ たり)

n	615	所要全段数
n_S	296	回収部段数
$n - n_S$	319	濃縮部段数
F	12.2 mol	供給流量
W	11.2 mol	廃棄流 (⁷ Li濃縮流)
M ₂₉₆	811 mol	供給点段間流量

核融合炉ブランケット材である6リチウムの同位体濃縮 を目的として,置換クロマトグラフィー法の研究を行った. 吸着剤としてB15C5を用い,HETP値を小さくすることを方 針として,吸着剤の調製,分離性能評価,プロセスシミュ レーションを行った.

- 吸着剤粒径を小さくすることでHETP値を低減し, 粒径 が60 µmの場合にサブミクロンのHETP値を得た.
- ●間欠的な供給抜き出しのあるプロセスシミュレーション を行い,供給抜き出し割合を最適化することで,分離パ ワーを最大化できることを示した.
- 過渡応答性の良い吸着剤に利点があることを示唆し、新 奇吸着剤の開発を検討している.

