日本原子力学会水化学部会 2022年奨励賞 受賞論文紹介

600合金の酸化皮膜性状とPWSCC発生感受性に及ぼす溶存水素濃度の影響

Influence of Dissolved Hydrogen Concentration on the Protective Property of Oxide Film of Alloy 600 Against Primary Water Stress Corrosion Cracking

論文: Corrosion Vol.78 (2022) 885-893.

PWR1次系における600合金とPWSCC

PWSCC発生に対するDH濃度の影響

既往知見 : DH濃度の低下がPWSCC発生を抑制

目的

▶ 600合金に形成する酸化皮膜 性状がDHによって変化

- ➢酸化皮膜性状がPWSCC感受性 に影響することが示唆されている
- > DH濃度を低下した水質での PWSCC抑制メカニズムは明らか にされていない

目的

DH濃度を下げたPWR1次冷却水中で形成する 酸化皮膜のPWSCCに対する保護的性質を調べる

低DH水質によるPWSCC発生抑制機構の仮説

分析試料

▶ 過去の研究^[1]でPWSCC試験に供した試験片の表面に 形成した酸化皮膜を調査対象とした。

表。供試材の化学成分

	Chemical Composition (wt%)								
	С	Si	Mn	Р	S	Fe	Cr	Ni	Cu
Alloy 600 (Mill Annealed)	0.029	0.28	0.28	0.009	0.001	9.53	15.57	73.54	0.014

表.前研究のPWSCC試験の条件と結果^[1]

No.	DH 濃度 (cc/kg-H ₂ O)	他の水質	温度 (°C)	浸漬時間	PWSCC発生数
1	5		345	1200 h	0/7
2	15	B: 1800 ppm Li: 3.5 ppm DO: 5 ppb以下			PWSCC Mitigation 2/7
3	30				5 /7

▶ 粒界酸化: PWSCC発生の前駆現象^[1] ▶ 5 cc/kgのDH濃度では、粒界酸化が比較的顕著でなかった。

Fig. Oxygen EDS maps

内層酸化皮膜中のFeの価数

▶ 15、30 cc/kgのDH濃度では Fe²⁺とFe³⁺ が混在
 ▶ 5 cc/kg のDH濃度では, Feが主にFe³⁺として存在

Fig. EELS at Fe-L₃ edge for inner oxide layer

酸化皮膜の電気抵抗

▶ 5 cc/kgの内層皮膜の電気 抵抗は、30 cc/kg DHの場 合よりも大幅に高い

Fig. Nyquist plot and Bode plot

Table. Fitted result of Nyquist Plot

		5 cc/kg	30 cc/kg
	R_{s} (Ω cm ²)	12	12
	$Q_1 (\Omega^{-1} S^n cm^2)$	1.8×10 ⁻⁴	1.7×10 ⁻⁴
	n ₁	0.49	0.63
	R_1 (Ω cm ²)	27	2.1×10 ²
	$Q_2 (\Omega^{-1} S^n cm^2)$	1.2×10 ⁻⁴	1.5×10 ⁻⁴
	n ₂	0.81	0.85
]	R ₂ (Ω cm ²)	2.5 ×10⁵	2.2×10 ⁴

- R_s: resistance of electrolyte
- Q₁: CPE (Constant Phase Element) of outer oxide
- R₁: resistance of outer oxide
- Q₂: CPE of inner oxide
- R₂: resistance of inner oxide

Fig. Equivalent circuit for fitting

低DH水質で形成した酸化皮膜のPWSCCに対する保護的性質

<u>仮説</u>(右図)

- DH濃度が5 cc/kg の水質ではFeがFe³⁺として存在
- Fe³⁺ がスピネル型酸化物の格子欠陥を減らす
- 欠陥の少ないスピネルがイオン拡散を抑制(酸化皮膜の 電気抵抗が増大)
- 保護性の酸化皮膜に覆われた600合金では **お生じにくく** PWSCC発生が抑制される

