

日本原子力学会 水化学部会 第43回定例研究会 2022年6月17日 オンライン開催

ラジオリシスの解析モデル

(株)日立製作所 研究開発グループ 脱炭素エネルギーイノベーションセンター 和田陽一

- 1. 腐食環境評価モデルの現状
- 2. 腐食環境評価モデルの課題への対応
- 3. 新たな解析モデルの課題
- 4. まとめ

水の放射線分解による腐食環境の形成とラジオリシスモデル

BWRは炉心で蒸気が発生。放射線分解で生成した 0_2 と H_2 の大部分は蒸気に移行,残留 H_2O_2 を主とする酸化性成分が腐食環境を決定 \Rightarrow ラジオリシス/ECPモデルが腐食環境評価に重要な役割

水の放射線分解

炉心でγ線および中性子に より炉水が分解し, ラジカル や安定化学種が生成

 $H_2O\rightarrow H_2$, O_2 , H_2O_2 , ラジカル(OH等)

ガス放出

放射線分解で生成した

 H_2 と O_2 はガス成分であり高温での分配比に応じて蒸気中に移行。

水素濃度:約2ppm 酸素濃度:約16ppm

化学反応

残留したO₂ および H₂O₂ により酸化性となり炉水の 腐食環境を形成。

溶存酸素濃度200~300ppb

腐食環境評価の水化学部会報告書

2022年2月に水化学部会からBWRのラジオリシスとECPモデルに関する水化学部会報告書#2022-0001「沸騰水型原子炉一次冷却系の腐食環境の評価手法に関する現状と課題」を発行

水化学部会報告書#2022-0001

沸騰水型原子炉一次冷却系の腐食環境の 評価手法に関する現状と課題

2022年 2月

(一社) 日本原子力学会 水化学部会

目次

まえが	ŧ	
1. 水	素注入技術の概要	
1.1	BWR 原子炉冷却系構造材の腐食損傷	
1.2	水素注入の目的	
1.3	水素注入設備の概要	. 1
1.4	水素注入量の設定方法	. 1
1.5	水素注入の運用方法	. 1
2. 実	機への適用実績	. 1
2.1	水素注入の実績(国内, 海外)	. 1
2.2	水素注入適用時の課題	. 2
3. 腐	食環境評価手法	. 2
3.1	腐食環境評価手法の概要	. 2
3.2	BWR への適用方法	. 3
3.3	ラジオリシス計算コード	. 3
3.4	腐食電位解析コード	. 4
4. 1	犀析結果と実機ベンチマーク	. 5
4.1	解析結果	. 5
4.2	実機データとのベンチマーク結果	. 6
5. 腐	食環境評価の現状と課題	. 6
5.1	モデル評価の現状と課題	. 6
5.2	BWR 水質解析モデルの課題	. 8
6. ŧ	とහ	. 8
あとが	ŧ	. 9
添付	資料 1 国内機関 A, B が実施した炉内各部の腐食電位解析結果の給水水素濃度依存性	. 9
NG 64	資料2 新たな環境緩和技術に対する腐食環境評価	q

ラジオリシスモデルの基本式

一次冷却系各部位での炉水中化学種濃度を計算し腐食環境を評価

基本式

$$\frac{\partial C_i(x,t)}{\partial t} = -\nabla (UC_i) + D\Delta C_i + g_i Q^{\gamma} + g_i Q^n + \sum_{mn} k_{mn}^i C_m C_n + C_i \sum_s k_{is} C_s + \frac{V_f}{1 - V_f} \left(\varepsilon_i^* C_i^{vapor} - \varepsilon_i C_i \right)$$
 移流 拡散 放射線分解 化学反応(2次反応を例示) 気相への移行

入力パラメータ

項	入力パラメータ
移流	流速,領域長さ
放射線分解	G値,線量率分布(γ線,中性子)
化学反応	化学反応速度定数、活性化エネルギー、
気相への移行	ボイド率, 炉心出力分布, ヘンリー定数, ガス吸収・放出係数, 水の比熱, 潜熱
全体	プラント設計値(寸法, 炉心流量, 再循環流量, 給水流量, 蒸気流量, 炉水温度, 圧力)

解析流路

腐食電位(ECP)計算モデル基礎式

混成電位の概念に基づき各電気化学反応の電流の総和が釣り合う 電位をECPとして算出

基礎式

各電流は拡散と電気化学反応から計算(バトラーボルマー式を使用する方法もある)

$$D_i \nabla^2 C_i = 0$$

〈境界条件〉

 C_i = C_i (bulk): 拡散境界層-バルク境界, N_i = $D_i \nabla C_i$ = (C_i の電極反応速度): 金属表面

電極反応式: $k_f = k_f^{\circ} \exp(\alpha(\phi - E_0)zF/RT)$, $k_h = k_h^{\circ} \exp(-(1-\alpha)(\phi - E_0)zF/RT)$

入力パラメータ

項	入力パラメータ
カソード反応	O ₂ , H ₂ O ₂ の標準電極電位, 電極反応速度定数, 透過係数
アノード反応	H ₂ の標準電極電位, 電極反応速度定数, 透過係数
金属溶出	各構造材料のアノード分極曲線
その他	物質移動に係る流速,配管径,温度,密度,動粘性係数

BWR炉内の酸化性成分濃度とECPの分布の解析結果

水素注入をしていないときの腐食環境は酸化種濃度が数百ppb, ECP≥0.1VvsSHEと高い

原子炉底部水質のラジオリシスモデルによる解析例

BWRの炉水中では主にH₂O₂が腐食環境を支配。給水水素濃度の増加と共に炉水中H₂濃度が増加しO₂, H₂O₂濃度が低下

実機でのECP実測値とECPモデルによる解析結果の比較

ラジオリシスモデルの濃度計算結果を入力としたECPモデルにより実機でのECP実測値を説明可能

- 1. 腐食環境評価モデルの現状
- 2. 腐食環境評価モデルの課題への対応
- 3. 新たな解析モデルの課題
- 4. まとめ

解析モデルの課題と対応(ラジオリシス)

物性値については高温反応速度定数とG値の整備が今後も課題

対象	項目	影響	現状の扱い・手法	現状手法の妥当性の根拠	精度向上に向けての課題と対応
物性値	基本式	・現象の記述の	・ほぼ各機関共通	・基本式の考え方は、各機関で同様であり、共	・標準を作成する上で,この部分を変える必要なし
		適切さ	放射線分解,反応,気液移行を考慮	通認識とされている	
	反応式	・水素注入効率	·Burns の式を出発点に、各機関適宜	・文献調査の結果、基本的な式や	・高温のデータがないものがあるため、影響の有る式につい
			見直しをしてきた	特に重要と思われる式が採用されている	ては測定を検討する
			・速度定数は高温のデータを使用し,	・使用されている速度定数は文献値の範囲内	・OH ラジカルと水素の反応の精度向上が全体の精度向上に
			測定値のないものは拡散の活性化	である	重要で,データ確立が望まれる
			エネルギーで室温の値から推定		
			・各機関で異なる部分がある		
			・実用レベル ・国内では 2009 年の AECL セットに		
			- 国内では 2009 中の AECE ピットに 統一		
	G値	・水素注入効率	・国内一部機関では共通セットを使用	・OH ラジカル、H ₂ O ₂ 以外の G 値は	・感度解析により,過酸化水素の G 値の重要性が示された
	~ ii=	33//22/33	(γ:エリオット,中性子:勝村)	高温までの測定データがあり。	が、BWR 温度での過酸化水素の
			・各機関毎に評価した値を使用	各機関でほぼ同じ値であり、ほぼ確立されて	G値など, 280℃までのデータが揃っていない
				いる	
プ ラント	気液移行	・主蒸気系の気体	・炉水-蒸気間の吸収,放出速度を	・ヘンリー則に基づく気液移行係数をもとに、	・炉心でのガスの移行迷度が決まりない
N° ラメータ		成分濃度	与えて計算	主蒸気及び炉水の複数の酸素、水素、及び過	・過酸化水素の蒸気相への移行の扱い
		・炉水の化学種濃度	・気液平衡からのずれは、吸収、放出	酸化水素濃度の実測値を同時に妥当な範囲	・機器性能(キャリオーバ、キャリアンダ)の取り込み
			速度の値で調整	で再現できるよう,蒸気への吸収と放出を調	・今後,実機主蒸気系データの蓄積が進んだ上で,炉型や燃
			・プラント共通	整している	料仕様から共通性を抽出し, 複数プラントの主蒸気,炉水の挙動を広範に説明できる吸
					検致プラフトの主然式, が小の手動を広軸に説明できる吸 収、放出速度の提示
					・ヘンリー則からのずれが過渡平衡によるか、過酸化水素に
					よるか検討(炉上部での測定)
					・感度解析の結果,現状の手法による調整代は小さい
	流動	・反応効率	・ 炉内の特徴 (流れ, 温度, 線量率,	・再循環系や炉底部での混合や滞留の影響が	・ダウンカマ内の複雑な流れの影響は二次元での評価は困
		・混合効果	構造)で分割し、1次元での取り扱い	平均化された部位での実測値と計算結果の	難であり、3次元流動解析に基づいた感度解析を検討する
			· 径方向多層化(温度分布)	一致は良好であり、1次元または2次元の	
			・周方向多層化(JP 有無を考慮)	流動評価により模擬が可能	
			・ダウンカマの3D化		
	仲日本ハナ	+L0160 /\ 47+L++	(流動解析により混合の効果を検討等)	1) BB - 40 - 71 - 7 - 10 - 45 - 7	(0 P 7) 7 0 50 7 0 P (88
	線量率分布	・放射線分解効率 ・再結合効率	2 D輸送方程式DOT, 3 D輸送	・公開されている最新の輸送コードを使って	132 33 34 35 36 37 37 37 37 37 37 37
		・冉枯合効率	方程式TORTなどの出力から, 入力を決定	いる。中性子の輸送コードは精度の検証結果 が報告されている。ガンマ線については報告	
			・ 径方向多層化 (減衰)	が報告されている。カンマ縁については報告	・ダウンカマ線量への感度解析の結果、線量依存性が大きい
			・周方向多層化(炉心の分布)	21000000	ため、線量の弱い部位を流れる影響を考慮する必要がある
			・ダウンカマの3D化		・燃料仕様の変更(ステップ I, II, III など)の影響取り
					込み
					・炉内の線量率(中性子、ガンマ線)分布の
					評価を解析,実測の両面から検討する
*\n+	西フ上出人	よな労力人 油味ショ	川原之に一次や却での府会理法の証価も注	1281 - 778 - 121 -	

(一社)日本原子力学会 水化学部会,沸騰水型原子炉一次冷却系の腐食環境の評価手法に関する現状と課題,水化学部会報告書 #2022-0001(2022)

解析モデルの課題と対応(ECP)

物性値については高温電気化学反応のパラメータ整備が今後も課題

対象	項目	影響	現状の扱い・手法	現状手法の妥当性の根拠	精度向上に向けての課題と対応
物性値	基本式	・現象記述の適切さ	・各機関共通 ・混成電位の概念	・基本式の考え方は、各機関で同じであり、共 通認識とされている	・モデルの精度向上で、この部分を変える 必要なし
	反応式	・電位の精度	・酸素から直接水を生成する4電子過程・酸素から,過酸化水素を経由する2電子過程・過酸化水素,酸素の平衡反応を考慮せず	・アノード反応、カソード反応の反応式は各機 関でほぼ同様であり、 共通認識とされている ・現状では、どちらを使っても腐食 電位上に大きな違いは見られない。	・フシカルのアノード/カソード反応を取り扱っていない ため、ラジカルの影響評価を実施 ・カソード分極測定を実施して電流曲線を 適切に示すことができる式を選定する
	高温 物性値	・電位の精度	・拡散係数,動粘性係数,密度など,高温物性値のほぼ確立しているものをベースに使用・電気化学反応定数など、未確立で個々に設定	・確立されていないパラメータについては、腐 食電位の測定値により校正して使用している	・過酸化水素の拡散定数等のデータが未確立・電気化学反応定数等の高温純水中の値が 十分に確立していない・カソード及びアノード分極測定より決定 する
	分極曲線	・電流密度 ・電位の精度 ・濃度依存性 ・時間依存性	・一般化パトラーボルマー近似または、1次元 拡散方程式を用いて物質移行を評価 ・報告された分極曲線データをもとに、腐食電 位の測定値により校正して使用している	・電流密度の考え方は各機関でほぼ同様であ り、共通認識とされている	・SUSを含め、高温純水中での分極曲線の測定例があるが学会として共通化されていない ・実機評価において酸化皮膜有無の扱いが 未確立であるため、酸化皮膜の扱いを明確化する
プラント パラメータ	幾何形状	・炉内機器毎の電位の精度	・水力等価直径に換算して入力 ・流動解析からマストランスファを算出	・単純な形状への水力等価直径の 適用は流体力学の知見から妥当であり,燃料 被覆管の熱設計などにも利用されており,間 題ないと考えられる	・3 D流体解析による水力等価直径への変換の難しい形状 や流れの場合の取り扱い

水の放射線分解

放射線のエネルギーを吸収して水分子が励起や電離し,時間経過とともに種々のラジカルや安定分子を生成。100nsでのプライマリ収率としてG値を定義(mol/Jあるいは個/100eV)

BWR運転温度でのG値

放射線の単位吸収エネルキ当たりの収率としてG値が重要。 高温で不安定な化学種は実験が難しくG値に不確かさ(H₂O₂等)。

還元性 🗘 🗘 酸化性

					/			
化学種	e ⁻	H⁺	н	H ₂	ОН	H ₂ O ₂	HO ₂	機関
	3.54	3.54	0.94	0.56	3.48	1.06	_	東京大学
	3.52	3.52	0.90	0.63	4.68	0.50	-	AECL'94
	3.47	3.47	1.43	0.61	5.55	0.29	1	AECL'09
γ線	3.50	3.50	0.90	0.60	4.50	0.55	ı	Studsvik
	3.50	3.50	0.90	0.60	4.30	0.65	I	ALARA
	2.57	2.57	1.25	0.57	4.28	0.34	-	Sanguanmith
	3.41	3.41	0.87	0.60	4.86	0.31	ı	国内A•B
	0.68	0.68	0.52	1.52	1.66	1.29	ı	東京大学
	0.61	0.61	0.34	1.26	2.02	0.65	0.05	AECL'94
	1.27	1.27	0.49	0.98	2.77	0.43	0.03	AECL'09
中性子	0.65	0.65	0.45	1.26	1.77	0.85	0.05	Studsvik
	0.60	0.60	0.50	1.40	1.70	1.04	0.04	ALARA
	0.62	0.622	0.98	0.99	2.33	0.57	0.02	Butarbutar
	0.68	0.68	0.52	1.52	1.80	1.22	_	国内A•B

 O_2 , HO_2 O_2 OH は反応には考慮するがG値は無しとして扱う

中性子のG値のモデル計算

近年,中性子のG値をトラック拡散モデルにより算出することも研究

Fig. 1. Time dependent G-values of OH at various LET between 5 to 80 eV/nm at 25 °C (upper) and 285 °C (lower).

Fig. 2. Primary G-values of main radiolytic species at high temperatures evaluated for BWR (dashed lines) and Yayoi (solid lines).

水の放射分解反応に係る素反応と高温反応速度定数

放射線分解生成物同士が反応することにより炉水中濃度が決定

BST			反応速度定数 [M ⁻¹⁻¹ s ⁻¹ la次反応の場合]												
March Marc	8.0			国内接限											
The The	85	始原系	生成系	A.B 共通入力	(290°C) ⁽²⁵⁾	(290°C) ⁽²⁴⁾	(285oC) ⁽¹⁵⁾		(285°C) (32)	(288°C) (19)	(291°C) (201	(286°C)(14)	(285°C) ⁽²¹⁾	東大 (250℃) ⁽¹³⁾	(300,C) (30
2	1	e-+ H ₂ 0	H + OH-	1.7×10 ³	-	-	1.7×10 ²	-	1.97×10 ²	•-	7.2×10 ²	29×10 ²	-	-	-
2	1'	0H" + H	e" + H20	6.39×10 ⁹	-	-	6.39×10 ⁹	2.38×10 ⁹	3.4×10 ¹⁰	+	2.6×10 ⁸	7×10 ⁸	-	1.92×10 ⁸	-
1	2	e" + H"	Н	5.45×10 ¹¹	-	-	5.45×10 ¹¹	228×10 ¹¹	4.31×10 ¹¹	+	2.6×10 ¹¹	2.6×10 ¹¹	-	2.64×10 ¹¹	1.56×10 ¹¹
A	Z	н	e" + H"	1.61×10 ⁵	-	-	1.61×10 ⁵	-	1.36×10 ⁶	4-	-	-	-	-	-
Section Sect	3	e" + 0 H	OH-	3.44×10 ¹¹	-	-	3.44×10 ¹¹	3.2×10 ¹¹	1.34×10 ¹¹	+	3.5×10 ¹¹	2.9×10 ¹¹	-	3.8×10 ¹¹	1.54×10 ¹¹
A	4	e"+ H ₂ O ₂	0H + 0H	2.61×10 ¹¹	-	-	2.61×10 ¹¹	1.94×10 ¹¹	2.53×10 ¹¹	+	2.3×10 ¹¹	2.4×10 ¹¹	-	5.46×10 ¹⁰	3.33×10 ¹¹
Total Tota	5	2H	H ₂	9.5×10 ¹⁰	-	-	9.5×10 ¹⁰	8.4×10 ¹⁰	9.2×10 ¹⁰	+	1.3×10 ¹¹	9×10 ¹⁰	-	7.01×10 ¹⁰	-
18	6	e" + HO ₂	HO ⁵ -	1.5×10 ¹¹	-	-	1.5×10 ¹¹	2.1×10 ¹¹	1.65×10 ¹¹	+	-	3×10 ¹¹	-	4.5×10 ¹⁰	-
10	7	e" + 0 ₂	02	2.05×10 ¹¹	-	-	2.05×10 ¹¹	223×10 ¹¹	2.57×10 ¹¹	+	2.2×10 ¹¹	2.6×10 ¹¹	-	2.06×10 ¹¹	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	2e" + 2H ₂ 0	H ₂ + 20H ⁻	6.98×10 ⁹	-	-	2.36×10 ⁷	2.46×10 ¹¹	6.98×10°	+	5×109	5.5×10 ⁹	-	6.0×10°	1.49×10°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	20H	H ₂ O ₂	1.01×10 ¹⁰	-	-	1.01×10 ¹⁰	2.38×10 ¹⁰	2×10 ¹⁰	+	2.8×10 ¹⁰	2.5×10 ¹⁰	-	1.6×10 ¹⁰	2.06×10 ¹⁰
12 H + H H H H H H H H H	10	e" + H + H ₂ O	0H-+H2	4.57×10 ¹¹	-	-	4.57×10 ¹¹	2.67×10 ¹¹	8.75×10°	+	1.02×10 ¹⁰	2.7×10 ¹¹	-	3.2×10 ¹¹	-
13	11	e" + HO ₂ " + H ₂ O	0H + 20H-	-	-	-	アルカリ系で	-	1.51×10°	-	6.9×10°	7.14×10 ⁸	-	-	-
13	12	H + OH	H ₂ O	6.02×10 ¹⁰	-	-	6.02×10 ¹⁰	7.48×10 ¹⁰	6.58×10 ¹⁰	+	2.3×10 ¹¹	23×10 ¹¹	-	5.46×10 ¹⁰	6.70×10 ¹⁰
14	13	0H + H ₂	H + H ₂ O	8.01×10 ⁸	-	-	8.01×10 ⁸	1.10×10 ⁹	1.26×10°	+	1.5×10°	1.4×10°	-	9.04×10 ⁸	-
15	13"	H + H ₂ O	0 H + H ₂	5.0×10 ³	8×10 ³	1.6×10 ⁴	1.33×10 ³	-	-	1×10 ⁵	1	1	-	20 (23)	3.18×10 ⁴
154	14	H + O ₂	HO ₂	5.93×10 ¹⁰	-	-	5.93×10 ¹⁰	2.13×10 ¹¹	9.72×10 ¹⁰	-	2.5×10 ¹¹	1.5×10 ¹¹	-	7.61×10 ¹⁰	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	H + HO ₂	H ₂ O ₂	1.97×10 ¹¹	-	-	-	2.13×10 ¹¹	6.33×10 ¹⁰	-	2.3×10 ¹¹	3×10 ¹¹	-	1.30×10 ¹¹	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15+	H + HO ₂	20H	-	-	-	1.97×10 ¹¹	-	-	-	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	H + 02	H02 ⁻	1.97×10 ¹¹	-	-	1.97×10 ¹¹	2.13×10 ¹¹	7.33×10 ¹⁰	-	2.3×10 ¹¹	3×10 ¹¹	-	2.56×10 ¹¹	-
19	17	e" + 0 ₂ " + H20	HO2" + OH"	1.5×10 ¹¹	-	-	1.5×10 ¹¹	4.47×10 ¹¹	3.93×10°	6 -	3.33×10 ⁹	4.76×10 ⁹	-	3.8×10°	-
20	18	H + H ₂ O ₂	0H + H ₂ 0	1.91×10 ⁹	-	-	1.91×10 ⁹	4.43×10 ⁸	1.03×10°	+	3.5×10°	1.4×10 ⁶	1.87×10°	1.15×10°	1.14×10°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	0H + H ₂ O ₂	H ₂ O + HO ₂	3.91×10 ⁸	-	-	3.91×10 ⁸	5.28×10 ⁸	5.42×10 ⁸	+	4.3×10 ⁸	4.2×10 ⁸	-	295×108	-
21' H02' H00	20	0 H + H O ₂	H ₂ 0 + 0 ₂	3.08×10 ¹⁰	-	-	3.08×10 ¹⁰	7.58×10 ¹⁰	3.10×10 ¹⁰	+	7.6×10 ¹⁰	1×10 ¹¹	-	2.9×10 ¹⁰	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	0H"+ H2O2	HO ₂ + H ₂ O	1.27×10 ¹¹	-	-	1.27×10 ¹¹	-	1.37×10 ¹¹	+	6.1×10°	1×10 ¹⁰	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21"	H 02" + H20	0 H - + H ₂ O ₂	3.90×10 ⁶	-	-	3.90×10 ⁶	-	3.29×10 ⁶	+	9.9×10 ⁶	1.2×10 ⁷	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	2H0 ₂	H ₂ O ₂ + O ₂	3.66×10 ⁷	-	-	3.66×10°	8.42×10 ⁷	2.41×10 ⁷	-	4.5×10 ⁷	5×10 ⁷	-	3.02×10 ⁷	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	HO₂	02" + H*	2.39×10 ⁵	-	-	2.39×10 ⁵	7.48×10 ⁶	2.7×10 ⁵	-	1.9×10 ⁶	3.9×10 ⁵	-	1.14×10 ⁶	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23'	02" + H"	HO ₂	5.09×10 ¹¹	-	-	5.09×10 ¹¹	4.8×10 ¹¹	5.42×10 ¹¹	4-	6.1×10 ¹¹	7.7×10 ¹¹	-	6.40×10 ¹¹	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	HO ₂ + O ₂	02 + HO2	3×10 ⁹	-	-	3×10°	4.96×10 ⁸	3.82×10 ⁸	4-	4.2×10 ⁸	5×10 ⁸	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	H* + OH-	H ₂ O	1.02×10 ¹²	-	-	1.02×10 ¹²	1.49×10 ¹²	9.76×10 ¹¹	4-	1.74×10 ¹²	1.9×10 ¹²	-	1.41×10 ¹²	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	H ₂ O	H+ + OH-	7.40×10 ⁻²	-	-	7.40×10 ⁻²	1.27×10 ⁻¹	7.57×10 ⁻²	+-	1.01×10 ¹	1.4×10 ⁻¹	-	2.53×10 ⁻¹	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	02 + OH	0H + 02	8.45×10 ¹⁰	-	-	8.45×10 ¹⁰	1.06×10 ¹¹	8.44×10 ¹⁰	+	3.1×10 ¹¹	2.9×10 ¹¹	-	2.43×10 ¹¹	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	202 +2H20	02 + H2O2 + 20H	3.5×10 ⁷	-	-		3.2	3.5×10 ⁷	-	-	9.52×10 ⁶	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27+	02"+ H20	HO2 + OH	1.27×10 ¹¹	-	-	1.27×10 ¹¹	-	1.31×10 ⁸	-	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27+"	HO2+0H	02"+ H ₂ 0	1.96×10 ⁴	-	-	1.96×10 ⁴	-	1.37×10 ¹¹	-	-	-	-	-	-
H ₁ 0 + 0 (20 ≠ 0 ₂) 42×10 ² 42×10 ² 46×10 ⁻¹ 255×10 ² 255×10 ² 255×10 ² 46×10 ⁻¹ 46×10 ⁻¹ 255×10 ² 255×10 ² 255×10 ² 255×10 ² 255×10 ²	28	H ₂ O ₂	H ₂ 0 + 1/20 ₂	2.62×10 ⁻²	-	-	2.62×10 ⁻²	-	-	-	-	-	-	5×10 ⁻²	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-4-4	H ₂ 0 + 0 (20→0 ₂)	-	-	-	-	-	-	-	4.2×10 ²	-	-	-	-
30 H0 ₂ +H ₂ O ₂ O ₂ +OH+H ₂ O 158×10 ²	29	H ₂ O ₂	H* + HO2	2.85×10 ¹	-	-	2.85×10 ¹	3.8×10 ⁻¹	4.4×10 ¹	+	-	-	-	4.6×10 ⁻¹	-
31 H02+0H H02+0H 765×10 ^M 86×10 ^M - 956×10 ^M -	29"	H* + HO2-	H ₂ O ₂	5.09×10 ¹¹	-	-	5.09×10 ¹¹	2.13×10 ¹¹	5.42×10 ¹¹	+	-	-	-	2.56×10 ¹⁰	-
51 102 103 103 103 103 103 103 103 103 103 103	30	HO2+ H2O2	02+ 0H + H20	-	-	-	-	1.58×10 ²	-	-	-	-	-	-	-
32 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	31	HO2"+ OH	HO2+ OH-	-	-	-	7.65×10 ¹⁰	-	-	-	8.6×10 ¹⁰	-	-	9.56×10 ¹⁰	-
	32	0. 0°. H0 ₃ . H ₂ (03. 03 の反応系	-	-	-	-	-	-	-	-	-	-	多数考慮	-

BWR炉水(純水)の 放射線分解反応では 12の化学種 30以上の素反応 を考慮

水の放射線分解反応での重要な反応

各素反応のBWR運転温度(280℃)付近での反応速度定数,活性化 エネルギーの実測が必要

	化学	反応		AECI (00	AECL (04	٨٣٨٣	Chudovila	ALARA	N40-1144	***	11 7*七芒
#	始原系	生成系	国内A•B	AECL'09 (285°C)	AECL'04 (285°C)	AEAT (288°C)	Studsvik (291°C)	Eng. (286°C)	Mezyk他 (285°C)	果泉大学 (250°C)	リース・大学 (285℃)
13	OH + H ₂	H + H₂O	8.01E08	8.01E08	1.26E9	←	1.5E9	1.4E9	-	9.04E8	-
19	OH + H ₂ O ₂	H ₂ O + HO ₂	3.91E+08	3.91E8	5.42E8	←	4.3E8	4.2E8	-	2.95E8	-
2	E- + H+	Н	5.45E11	5.45E11	4.31E11	←	2.6E11	2.6E11	-	2.64E11	1.56E+11
2	Н	E- + H+	1.61E+05	1.61E05	1.36E5	←	-	-	-	-	-
4	E ⁻ + H ₂ O ₂	OH + OH⁻	2.61E+11	2.61E11	2.53E11	←	2.3E11	2.4E11	-	5.46E10	3.33E+11
7	E ⁻ + O ₂	O ₂ ⁻	2.05E+11	2.05E11	2.57E11	←	2.2E11	2.6E11	-	2.06E11	-
9	20H	H ₂ O ₂	1.01E+10	1.01E10	2E10	←	2.8E10	2.5E10	-	1.6E10	2.06E+10
13	H + H ₂ O	OH + H ₂	5.0E+03	2.14E04	-	1E5	-	-	-	20	3.18 × 10 ⁴
14	H + O ₂	HO ₂	5.693E+10	5.93E10	9.72E10	←	2.5E11	1.5E11	-	7.61E10	-
1	H + HO ₂	H ₂ O ₂ or 2OH	1.97E+11	1.97E11	7.33E10	←	2.3E11	3E11	-	1.30E11	-
18	H + H ₂ O ₂	OH + H₂O	1.91E+09	1.91E09	1.03E9	←	3.5E9	1.4E9	1.87E9	1.15E9	1.14E+09
20	OH + HO ₂	$H_2O + O_2$	3.08E+10	3.08E10	3.10E10	←	7.6E10	1E11	-	2.9E10	-
28	H ₂ O ₂	H ₂ O + 1/2O ₂	2.62E-02	2.62E-02	-	-	-	-	-	5E-2	-

H+H₂O→OH+H₂の反応速度定数

90年代から重要と指摘,近年実測値が報告され高温での影響大

石榑 1994

Katsumura et al. 2013

Muroya, et al. 2017

カソード反応の電気化学パラメータの決定

実測の酸素の

=(1)

カソード分極曲線

酸素のカソード分極曲線のターフェル勾配b。の酸素濃度依存性は水の 反応の重畳により説明可能,解析モデル化

10-5

10-6

SUS316L上での酸素のカソード分極曲線

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 (酸素の反応) $2H^+ + 2e^- \rightarrow H_2$ (水の反応)

実測値は2つのカソード反応が重畳と仮定

 $1 : 0_2 + 4H^+ + 4e^-$

 \rightarrow 2H₂O

酸素のカソード曲線の酸素濃度依存性の計算結果

酸素のカソード反応のターフェル勾配を定数として酸素濃度依存性を再現

		水のカソード反応の	酸素のカソード反応のターフェル勾配b _{c,O2} (V)							
		ターフェル勾配b _{c,H2O} 酸素濃度 (ppb)								
		(V)	10	20	40	100	300	1000		
橘ら、	2012	考慮せず	0.14	0.18	0.20	0.23	0.5	0.5		
本研究		0.04	0.5							

バトラーボルマー式

カソード・アノード電流を近似

$$i = \frac{\exp\left(\frac{\eta}{b_{a}}\right) - \exp\left(-\frac{\eta}{b_{c}}\right)}{\frac{1}{i_{0}} + \frac{1}{i_{l,a}} exp\left(\frac{\eta}{b_{a}}\right) - \frac{1}{i_{l,c}} exp\left(-\frac{\eta}{b_{c}}\right)}$$

i₀: 交換電流密度(Acm⁻²)、

n:過電圧(E-E_n)(V),

E₀:標準電極電位 (V vs SHE)、

b』 および b。 はアノードおよび

カンード反応のターフェル勾配(V)、

i_{l,a} および i_{l,c} は 拡散限界電流(Acm⁻²),

決定した電気化学パラメータによるECPの計算結果

分極測定によるパラメータのみで広範な酸素濃度で実測値と±0.1V内で一致

- 1. 腐食環境評価モデルの現状
- 2. 腐食環境評価モデルの課題への対応
- 3. 解析モデルの新たな課題
- 4. まとめ

貴金属注入時のECP解析モデル

白金上の電気化学反応を考慮し、白金付着量を用いてステンレス 等母材との混成電位を計算

白金上の電流を白金付着量の重みをかけて混成させて全電流を計算

$$\begin{array}{l} (1-\theta)\{i_{\text{sus,c}}(\phi)+i_{\text{SUS,a}}(\phi)+i_{\text{SUS, M}}(\phi)\}+\theta \mid i_{\text{NM,c}}(\phi)+i_{\text{NM,a}}(\phi)\} = 0 \\ < SS> & \end{array}$$

heta :被覆率, $i_{SUS,c}$:ステンレス上のカソード電流密度, $i_{SUS,a}$:ステンレス上のアノード電流密度, $i_{SUS,M}$:ステンレスの酸化溶出電流密度(アノード分極曲線), $i_{NM,c}$:白金上のカソード電流密度, $i_{NM,a}$:白金上のアノード電流密度.

被覆率θ ∝ 1/r (同一付着密度の場合)

· θ_{運転中貴金属注入} = 10θ_{停止運転時貴金属注入}

運転中貴金属注入効果の解析結果

少ない水素量で炉内の広い範囲でECPが低下することを解析可能 →付着反応系のV&Vならびに標準化に向けた検討が必要

RL Cowan & CJ Wood, "Control of radiation fields in BWRs after noble metal chemical addition." Chemistry 2002, 22-26 Apr, 2002, Paris, France . AD Odell, On-Line Noble metal Chemical Addition Benefits, Impacts, and Effects on a Commercial Nuclear Power Plant, NPC2008, 2008, Berlin, Germany. Wada Y et al., Proc. Symposium on Water Chemistry and Corrosion of Nuclear Power Plants in Asia, 2013, Oct 14-17, 2013, Taichung, Taiwan, P-53.

炉心管理の影響の考慮

起動時水素注入あるいは出力向上等での炉心流量および炉心出力が定格と異なる条件においても解析の入力として取り扱いが可能→V&Vならびに標準化に向けた検討が必要

- 1. 腐食環境評価モデルの現状
- 2. 腐食環境評価モデルの課題への対応
- 3. 解析モデルの新たな課題
- 4. まとめ

- ・水の放射線はBWR炉水の腐食環境を形成
- ・腐食環境評価にはラジオリシス/ECPモデルが用いられており、 いる実用的な精度で解析可能
- ・水化学部会報告書#2022-0001「沸騰水型原子炉一次冷却系の腐食環境の評価手法に関する現状と課題」が2022年2月に発行
- ・課題としてG値,反応速度定数,電気化学反応パラメータの整備 を指摘。既に以下が進展。
 - 中性子G値の解析からのアプローチ
 - 重要な反応の反応速度定数の高温での実測
 - 高温純水中の分極測定データから電気化学パラメータの検討
- ・新たな解析条件でのV&Vと標準化に向けた検討が必要
 - 貴金属注入等の付着反応系の場合
 - 起動時や出力向上を含む炉心管理により入力が定格と異なる場合

