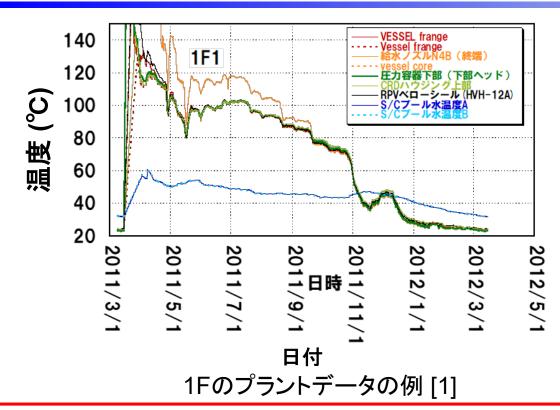
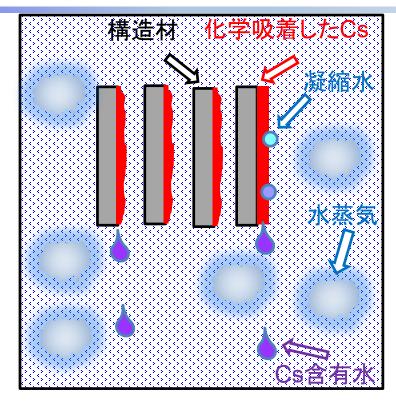
### 日本原子力学会2021年春の年会 [3G04] 3/19 10:15~G会場(Zoomルーム7)




シビアアクシデント時の原子炉内におけるセシウム分布・性状の予測 ~Cs化学吸着生成物の水への溶解性~

日本原子力研究開発機構


〇井元 純平, 中島 邦久, 三輪 周平

### 背景

## 化学吸着したCsの水相への溶出の可能性



- 事故後、半年間程度は、圧力容器の温度が100℃付 近の状態が続いている
- 炉内では長期間にわたって、水蒸気が充満し、温度 の変動等により水の蒸発と凝縮が繰り返えされてい たと予想される
- このような水の凝縮が化学吸着した壁面で起これば Csの水相に溶出する



上部構造材に化学吸着したCsが 水相に移行するイメージ図



Csの水相を介した再分布が 起こる可能性

【1】東京電力ホームページ、プラント関連パラメータ(水位、圧力、温度など)

### 目的 Cs化学吸着生成物の水への長期的な溶出挙動

#### <u>水相を介したCsの再分布評価</u>

● Cs化学吸着生成物の水への溶出挙動に関する知見が必要

対象となるCs化学吸着生成物 CsFeSiO<sub>4</sub>、Cs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>、Cs<sub>2</sub>Si<sub>4</sub>O<sub>9</sub>、CsFeO<sub>2</sub>

- 対象となるCs化学吸着生成物の水への溶出挙動に関する知見は皆無である
  - > Cs化学吸着生成物の水への溶出速度
  - 水への溶解度データ

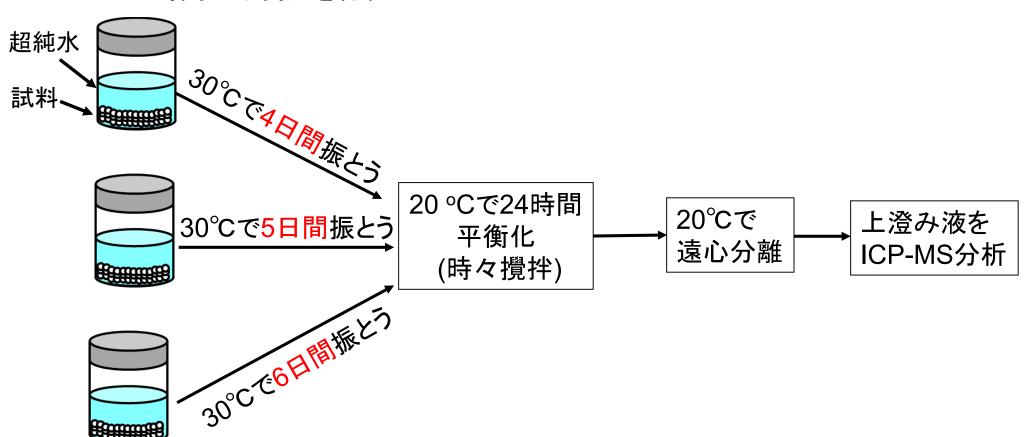
#### 目的

本研究ではCsの溶出挙動に資するCs化学吸着生成物の水への溶解度データの拡充を目的に、これまでに化学吸着再現実験で生成が確認された CsFeSiO<sub>4</sub>、Cs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>、Cs<sub>2</sub>Si<sub>4</sub>O<sub>9</sub>、CsFeO<sub>2</sub>の標準試料を作製し、OECD テストガイドライン[1]に準ずる方法で溶解度測定を行った。

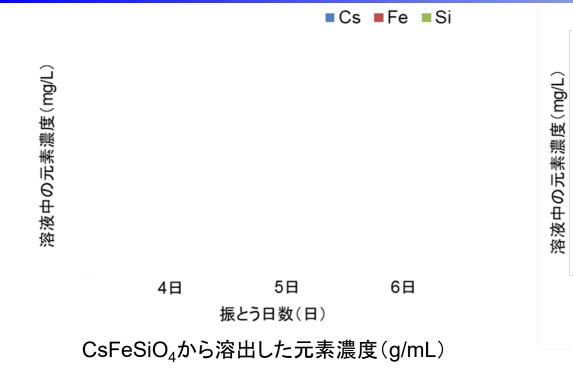
# 試料調製

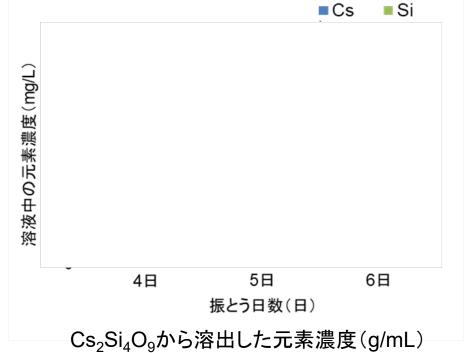
#### 標準試料の調製過程

- 窒素雰囲気のグローブボックス中で出発物質を混合する
- 作製した混合粉末を「成形→加熱(大気中)→粉砕・混合」の工程を単相試料が得られるまで繰り返す
- 単相試料の確認はX線回折(XRD)分析により実施した


#### 各Cs化合物の調製条件

| 化合物 | 出発物質 | 混合比(モル比) | 加熱温度(K) |
|-----|------|----------|---------|
|     |      |          |         |
|     |      |          |         |
|     |      |          |         |
|     |      |          |         |
|     |      |          |         |
|     |      |          |         |
|     |      |          |         |


# 溶解度測定試験

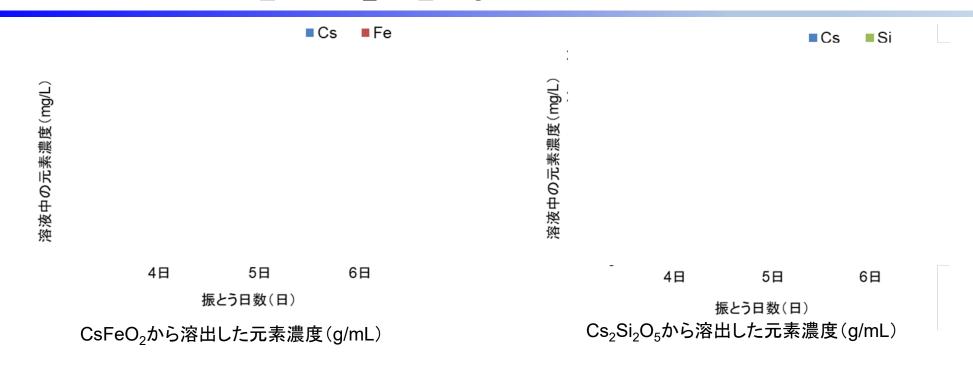

#### 溶解度測定試験(OECDテストガイドライン105フラスコ法に準じた方法)

- 蓋付きの3つの容器に飽和量(予測される溶解度の約5倍)の試料を超純水に溶解⇒予想される溶解度が不明なため、予備試験を実施して必要量を決定している
- 30℃にて一定時間振とうさせる
- 20℃に24時間の平衡化を行う



# CsFeSiO4とCs2Si4O9の溶解度測定結果






- Csの溶出に時間依存性があり、飽和に達していない
- Csが他の元素より優先的に溶出している

- ・ Csの溶出に時間依存性があり、飽和に達していない
- Siの溶出にも時間依存性が見られる
- CsがSiより優先的に溶出している

| 試料                                             | 元書  | 濃度(mg/L)<br>元素 4日 5日 6日 |    | Cs/Siモル比 |    |    | Cs/Feモル比 |    |    |    |
|------------------------------------------------|-----|-------------------------|----|----------|----|----|----------|----|----|----|
|                                                | 儿糸「 | 4日                      | 5日 | 6日       | 4日 | 5日 | 6日       | 4日 | 5日 | 6日 |
|                                                | Cs  |                         |    |          |    |    |          |    |    |    |
| CsFeSiO <sub>4</sub>                           | Fe  |                         |    |          |    |    |          |    |    |    |
|                                                | Si  |                         |    |          |    |    |          |    |    |    |
| Cs <sub>2</sub> Si <sub>4</sub> O <sub>9</sub> | Cs  |                         |    |          |    |    |          |    |    |    |
|                                                | Si  |                         |    |          |    |    |          |    |    |    |

# CsFeO2とCs2Si2O5の溶解度測定結果



• 共に飽和に達しているように見えるが、試料の純度も考慮すると、試料全体からのCs溶解率がほぼ100%とみなすことができ、投入試料中からCsが全溶解していると考えられる

| 試料 元素                                          | 濃度(mg/L) |    |    | Cs/Siモル比 |    | Cs/Feモル比 |    |    | 投入試料からのCs溶解率(%) |    |    |    |    |
|------------------------------------------------|----------|----|----|----------|----|----------|----|----|-----------------|----|----|----|----|
| D2477                                          | 7070     | 4日 | 5日 | 6日       | 4日 | 5日       | 6日 | 4日 | 5日              | 6日 | 4日 | 5日 | 6日 |
| CsFeO <sub>2</sub>                             | Cs       |    |    |          |    |          |    |    |                 | •  | '  |    |    |
| CSFeO <sub>2</sub>                             | Fe       |    |    |          |    |          |    |    |                 |    |    |    |    |
| Cs <sub>2</sub> Si <sub>2</sub> O <sub>5</sub> | Cs       |    |    |          |    |          |    |    |                 |    |    |    |    |
| CS2S12O5                                       | Si       |    |    |          |    |          |    |    |                 |    |    |    |    |

投入試料中のCsが全溶解 した濃度を分母とした場合

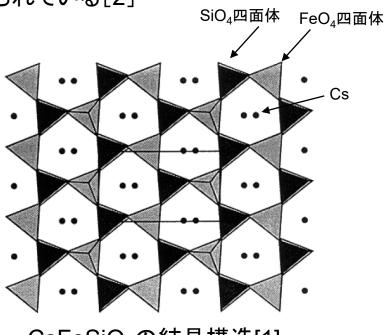
#### Cs化学吸着生成物の溶解性

#### Cs化学吸着生成物から溶出したCs濃度

| 試料                                             | 一書 | 濃度(g/L) |    |    |  |  |  |
|------------------------------------------------|----|---------|----|----|--|--|--|
| 百八个十                                           | 元素 | 4日      | 5日 | 6日 |  |  |  |
| Cs <sub>2</sub> Si <sub>2</sub> O <sub>5</sub> |    |         |    |    |  |  |  |
| CsFeO <sub>2</sub>                             |    |         |    |    |  |  |  |
| Cs <sub>2</sub> Si <sub>4</sub> O <sub>9</sub> |    |         |    |    |  |  |  |
| CsFeSiO <sub>4</sub>                           |    |         |    |    |  |  |  |

いずれのCs化学吸着生成物も正確な溶解度の 決定には至らなかったが、Csの溶解性の大きさ はCs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> / CsFeO<sub>2</sub> > Cs<sub>2</sub>Si<sub>4</sub>O<sub>9</sub> > CsFeSiO<sub>4</sub> の順となることが分かった。

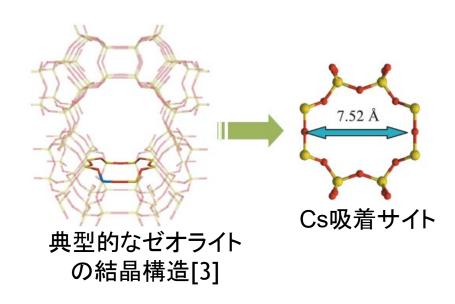
#### 炉内の主要なCs化合物


| Cs化合物                            | 溶解度(g/kg H <sub>2</sub> O) |  |  |
|----------------------------------|----------------------------|--|--|
| CsOH                             | 3860(15°C)                 |  |  |
| Cs <sub>2</sub> MoO <sub>4</sub> | 2040(18°C)                 |  |  |
| CsI                              | 786(20°C)                  |  |  |

単位が異なるため単純には比較できないが、 主要なCs化合物であるCsOH、 $Cs_2MoO_4$ 、Cslと比較して、 $CsFeSiO_4$ 、 $Cs_2Si_4O_9$ のCsO水への溶解性は、大幅に低くなることが分かった

# CsFeSiO₄の結晶構造と水溶性

#### CsFeSiO<sub>4</sub>


- FeO₄とSiO₄の四面体が交互に連なる構造
- 最大レベルの鉄を含むゼオライト型構造[1]
- ゼオライト型構造はCsを強固に結合することが 知られている[2]

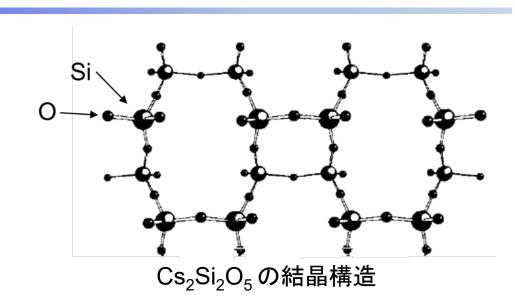


CsFeSiO₄の結晶構造[1]

#### 典型的なゼオライトの例

- ゼオライトは多数の細孔を持つ骨格からなり、 細孔内のNaなどの陽イオンがCsイオンとイオン交換により置換することで吸着が起こる[2]
- 細孔内に取り込まれるため、Cs溶出が起こりにくい




CsFeSiO₄はゼオライト構造を有し、細孔にCsが強固に結合しているため、Csの水溶性が低いことが予想される

[1] P. F. Henry et al., Chem. Commun., 1998, 2723–2724 (1998). [2]山岸ら, 日本原子力学会誌54, 166 (2012). [3]奥村ら, 表面科学, 34(3), 135-142 (2013).

## Cs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>とCs<sub>2</sub>Si<sub>4</sub>O<sub>9</sub>の結晶構造と水溶性

#### $Cs_2Si_2O_5$ [1]

- 骨格はSiO4の4員環と8員環が接続された形で 構成されている
- CsはCsFeSiO₄のようにSiO₄の骨格の中に取り 込まれるわけではなく、直接Oに結合している
- Csの結合の違いによりCsがCsFeSiO₄より溶 出しやすかったと考えられる

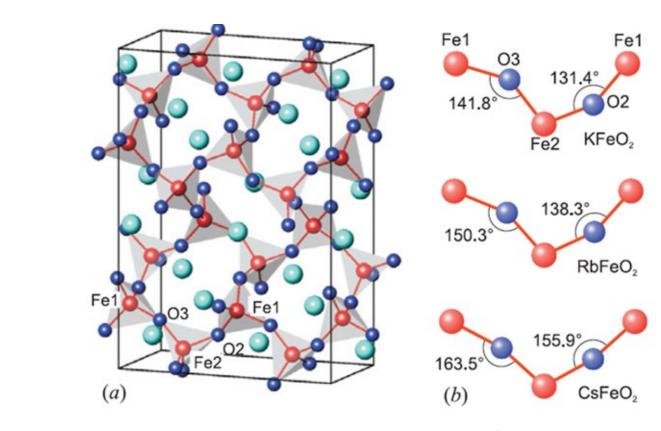


#### Cs<sub>2</sub>Si<sub>4</sub>O<sub>9</sub>

- 詳細な構造が不明
- CsがCsFeSiO<sub>4</sub>より溶出しやすかった原因としては Cs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>と同様と考えられる
- Cs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>よりもCsの溶解量が少ない原因
  - Csの割合による結晶構造の違い
  - Csが溶けたことによるpH変化の違い
    - Csが水に溶解することでよりCsOHが生じる
    - 溶液より塩基性なることでSi-Oの骨格も壊れて、 Csが溶けやすくなったと考えられる

#### Cs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>とCs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>の各溶出時間毎のpH

| 2 2 3 2 3 4 4 4 7 7 7 7                        |        |    |    |  |  |  |  |
|------------------------------------------------|--------|----|----|--|--|--|--|
| 試料                                             | pH(°C) |    |    |  |  |  |  |
| 百八个十                                           | 4日     | 5日 | 6日 |  |  |  |  |
| Cs <sub>2</sub> Si <sub>2</sub> O <sub>5</sub> |        |    |    |  |  |  |  |
| Cs <sub>2</sub> Si <sub>4</sub> O <sub>9</sub> |        |    |    |  |  |  |  |


## CsFeO2の結晶構造と水溶性

#### <u>CsFeO</u><sub>2</sub>[1]

Fe

Cs

- Fe-O-Fe結合の繰り返しを骨格とする構造で、CsはOと直接結合している
- CsFeSiO₄とは異なり、細孔の中に取り込まれているわけではないので、水溶性が高いと思われる



CsFeO2の結晶構造

# 結論及び今後の展開

#### 目的

本研究ではCsの溶出挙動に資するCs化学吸着生成物の水への溶解度データの拡充を目的に、CsFeSiO<sub>4</sub>、Cs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>、Cs<sub>2</sub>Si<sub>4</sub>O<sub>9</sub>、CsFeO<sub>2</sub>の溶解度測定を行った

#### 結論

- いずれの化合物も溶解度の決定には至らなかったが、Csの溶解性の大きさは Cs<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> / CsFeO<sub>2</sub> > Cs<sub>2</sub>Si<sub>4</sub>O<sub>9</sub> > CsFeSiO<sub>4</sub>の順となることが分かった
- Cs₂Si₄O₂とCsFeSiO₄のCsの溶解性は、炉内における主要なCs化合物と考えられているCsOH、CsI、Cs₂MoO₄と比較して大幅に低くなることが分かった

#### 今後の展開

- ◆ 溶解時間や溶解量を増やした試験を実施し、正確な溶解度を決定する
- ◆ 幅広い温度における溶解度データを取得する