Studsvik

How do $Co^{2+}_{(aq)}$ and $Zn^{2+}_{(aq)}$ interact with spinel in BWR coolant?

Recent progresses in fundamental understanding of radioactive cobalt induced radiation field and its suppression by zinc injection

V. Cantatore¹, C. Geers¹, J. Chen^{1,2} and I. Panas¹

¹Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden

²Studsvik Nuclear AB, Sweden

水化学部会 第19回全体会議および第39回定例研究会 大阪◆札幌◆東京 2021-03-12

The following researchers at the Department of Chemistry and Chemical Engineering, Chalmers University of Technology have performed this work. Swedish Radiation Safety Authority and Swedish Nuclear Power Utilities provided the financial support. For further reading on the topics, please refer to *J. Nuc Mater.* 540 (2020) 152361.

www,chalmers.se

Itai Panas Ph.D, Professor, Leader

Valentina Cantatore* Ph.D. * now @Schrödinger

Christine Geers Ph.D.

Jiaxin Chen Ph.D, Adjunct professor Sr Specialist, Studsvik

Outline

- Experimental/plant observations
- Hypotheses
- Interrogation (quantum chemistry)
- Summary of mechanisms

Co-60 deposition and release are reversible

Co-60 release can be "blocked" by $[Ni^{2+}_{(aq)}]$ and $[Zn^{2+}_{(aq)}]$ but not by $[Fe_{tot}]$

水化学部会 第19回全体会議および第39回定例研究会 大阪◆札幌◆東京 2021-03-12

Hypothesis Pathway for Co²⁺_(aq) deposition

1	$Co(OH)_2@(W/O) + Fe(OH)_2@(HGBI) → Fe(OH)_2 + Co(OH)_2@(HGBI)$ Co ²⁺ in coolant migrates to become hydroxylated grain boundary Co ion
2	Co(OH) ₂ @(HGBI) → (H ₂ O)CoO@(GB) Hydroxylated grain boundary Co ion attaches to GB and the protons to form H ₂ O
3	(H ₂ O)CoO@(GB) + Fe ²⁺ @(OOS) → (H ₂ O)FeO@(GB) + Co ²⁺ @(OOS) Co@GB exchanges with Fe ²⁺ @OOS
4	Co ²⁺ @(OOS) + Fe ²⁺ @(IOS) → Fe ²⁺ @(OOS) + Co ²⁺ @(IOS) Co ²⁺ @(OOS) moves inward to become Co ²⁺ @(IOS)

- $[1] \quad Co(OH)_2@(W/O) + Fe(OH)_2@(HGBI) \rightarrow Fe(OH)_2 + Co(OH)_2@(HGBI)$

M ²⁺ - Fe ²⁺	$\Delta \mathbf{G} \sim \Delta \mathbf{H}$ (eV)
Ni ²⁺ - Fe ²⁺	0.05
Co ²⁺ - Fe ²⁺	-0.26
Zn ²⁺ - Fe ²⁺	-0.79
Zn ²⁺ - Ni ²⁺	-0.84
Zn ²⁺ - Co ²⁺	-0.53
Co ²⁺ - Ni ²⁺	-0.31

To become the hydroxylated GB ions

Step 1

Steps 2-3 **To become accommodated at spinel** (OOS)/(OTS) sites (1)

Steps 2-3 **To become accommodated at spinel** (OOS)/(OTS) sites (2)

 $\begin{array}{ll} & \text{Co}(\text{OH})_2 @(\text{W/O}) + \text{Fe}(\text{OH})_2 @(\text{HGBI}) \rightarrow \text{Fe}(\text{OH})_2 + \textcircled{O}(\textcircled{HHHHH} + \text{HGBI}) \\ & \text{Co}(\text{OH})_2 @(\text{HGBI}) \rightarrow (\text{H}_2 \text{O}) \textcircled{CoO}@(\text{GB}) & +2 \, \text{eV} \\ \end{array} \\ \hline \begin{array}{ll} & \text{(H}_2 \text{O}) \textcircled{CoO}@(\text{GB}) + \mbox{Fe}^{2+} @(\text{OOS}) \rightarrow (\text{H}_2 \text{O}) \boxed{\text{FeO}}@(\text{GB}) + \mbox{Co}^{2+} @(\text{OOS}) & -0.56 \, \text{eV} \\ \hline \begin{array}{ll} & \text{Co}^{2+} @(\text{OOS}) + \mbox{Fe}^{2+} @(\text{IOS}) \rightarrow \mbox{Fe}^{2+} @(\text{OOS}) + \mbox{Co}^{2+} @(\text{IOS}) \\ \end{array} \end{array}$

Mobility @(HGBI) for Co and Zn

E_a=1 eV (measured for Co)

Step 4: Essential for accommodating more Co²⁺ in spinel

$Co^{2+}@(OOS) \rightarrow Co^{2+}@(IOS)$

$$\begin{bmatrix} Fe_3O_4 \end{bmatrix} \quad Co^{2+} \leftrightarrow Fe^{2+} \quad \Delta H=0.4 \text{ eV}$$
$$\begin{bmatrix} NiFe_2O_4 \end{bmatrix} Co^{2+} \leftrightarrow Ni^{2+} \quad \Delta H=-0.18 \text{ eV}$$

Co-60 uptake is enhanced in NiFe₂O₄ as compared to Fe_3O_4

 $Co(OH)_2@(W/O) + Fe(OH)_2@(HGBI) \rightarrow Fe(OH)_2 + Co(OH)_2@(HGBI)$ $Co(OH)_2@(HGBI) \rightarrow (H_2O)CoO@(GB) +2 eV$ [2] [3] $(H_2O)CoO@(GB) + Fe^{2+}@(OOS) \rightarrow (H_2O)FeO@(GB) + Co^{2+}@(OOS) -0.56 eV$ $Co^{2+}@(OOS) + Fe^{2+}@(IOS) \rightarrow Fe^{2+}@(OOS) + Co^{2+}@(IOS)$ [4] 第19回全体会議および第39回定例研究会 大阪◆札幌◆東京 2021-03-12

Co deposition in real life...

- On outer ferrite grain surfaces
 - Reprecipitation > surface diffusion > adsorption > inward diffusion
- In porous inner spinel layer
 - Interchange reaction > interface diffusion > adsorption > inward diffusion

The reversible Co deposition and release (step 1)

In pure coolant with a fresh oxide film, Co²⁺ diffusion into the interface (drive: Co²⁺ activity difference)

CHALMERS

The reversible Co deposition and release (steps 2-3)

To further move to OOS site via the transition state costs a large energy: $Co(OH)_2@(HGBI) \rightarrow (H_2O)CoO@(GB) +2 eV$ Co^{2+} moving out from (OOS) site in reverse direction would be a difficult path!

The reversible Co deposition and release (step 4)

Once got into (OOS) sites, further absorption into lattice is easy in NiFe₂O₄ but not so easy in Fe₃O₄

$$\begin{split} & [\mathsf{Fe}_3\mathsf{O}_4] \quad \mathsf{Co}^{2+} \leftrightarrow \mathsf{Fe}^{2+} \quad \Delta \mathsf{H}{=}0.4 \text{ eV} \\ & [\mathsf{NiFe}_2\mathsf{O}_4] \quad \mathsf{Co}^{2+} \leftrightarrow \mathsf{Ni}^{2+} \quad \Delta \mathsf{H}{=}{-}0.18 \text{ eV} \end{split}$$

2021-03-12

Summary

R1 $Co(OH)_2@(W/O) + Fe(OH)_2@(HGBI) \rightarrow Fe(OH)_2 + Co(OH)_2@(HGBI)$

 $(H_2O)CoO@(GB) + Fe@(OOS) \rightarrow (H_2O)FeO@(GB) + Co^{2+}@(OOS)$

 $Co^{2+}@(OOS) + Fe^{2+}@(IOS) → Fe^{2+}@(OOS) + Co^{2+}@(IOS)$

- - R2 $Co(OH)_2@(HGBI) \rightarrow (H_2O)CoO@(GB)$

How do Co²⁺(aq) deposit?

Co²⁺(aq) $\overline{\mathbb{C}}$

R3

R4

<u>Summary</u>

How do Zn²⁺(aq) suppress Co-uptake?

- $Zn(OH)_2@(W/O)+Fe(OH)_2@(HGBI) \rightarrow Fe(OH)_2@(W/O)$ + $Zn(OH)_2@(HGBI)$
- E_a of Zn(OH)₂@(HGBI) is 0.74 eV
- Zn(OH)₂@(HGBI) blocks Co(OH)₂@(HGBI)
- Zn²⁺ in coolant blocks Co²⁺ reprecipitation (forming outer oxide grains)

Studsvik

in collaboration with

CHALMERS