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Background and objectives
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The low-cycle fatigue (LCF) lives of austenitic stainless steels (SSs) were longer at high

DO level (≥ 100 ppb) than that at low DO level. The reason remains unclear. Most of the

data for high-DO water was obtained by using pure high temperature water, while most

of the data for low-DO water was obtained by using borated and lithiated high

temperature water. This would be one reason why the phenomenon occurred.

Reference : Omesh Chopra and Gary L. Stevens, 2018, “Effect of LWR Water

Environments on the Fatigue Life of Reactor Materials,” NUREG/CR-6909, Rev. 1.
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Fen = Nair/Nwater, Nair is the fatigue life in air

and Nwater is the fatigue life in water. The

greater the Nair, the more deleterious the

environment.

DO (dissolved oxygen)



Reference : P.L. Andresen, J. Hickling, A. Ahluwalia, and J. Wilson, 2008, Effect 

of Hydrogen on Stress Corrosion Crack Growth Rate of Nickel Alloys in Hign-

Temperature Water

Background and objectives
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DH(dissolved hydrogen)
1. Currently, around 2.2~3.1 ppm (25 cc/kg to 35 cc/kg) DH is added in the water.

2. Crack growth rate of nickel alloys showed a dependence on DH level.

3. Whether the DH is the main source of the absorbed hydrogen remains unclear.

In corrosion fatigue, change of DH level may affect the crack growth rate of 316

LN, leading to different fatigue lives at different DH level.

Conductivity (μS/cm) 1~40

pH
7.2~7.4 (at 285 

℃)

B (ppm)
Depends on 

core reactivity

Li (ppm) 0.2~2.2

Dissolved Oxygen (ppm) <0.005

Dissolved Hydrogen (cm3

(STP) H2/kg H2O)
25~35

Reference: 日本原子力学会標準 加圧水型原子炉一次系の水化学管理指針



Background and objectives
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Objectives:

⚫ Investigating the LCF behaviors of 316L/316LN SSs at different DO

levels.
➢ Are the previous studies right?

➢ Why do the LCF lives change at different DO levels?

⚫ Investigating the LCF behaviors of 316LN SSs at different DH levels.

➢ Will the change of the DH level affect the LCF behaviors of 316LN

SS?

➢ What is the main source of the hydrogen absorbed into the 316LN

SS.

⚫ Will the addition of boric acid and lithium hydroxide affect the LCF life

of 316L SS in high-DO water?

⚫ Recommendations for the optimization of the water chemistry.
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Fatigue life & Cyclic stress response

< 5 ppb, 1 ppm and 2 ppm DO water: Fen > 10

50 ppb, 100 ppb DO water: Fen was ~6
The equation used for predicting the Fen in the reference for austenitic stainless steels was

not conservative enough at DO levels of < 5 ppb, 100 ppb and 2 ppm and not accurate at

DO level of 50 ppb.
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Reference:

Omesh Chopra and Gary L. Stevens, 2018, “Effect of LWR Water Environments on the Fatigue Life of Reactor Materials,”
NUREG/CR-6909, Rev. 1

LCF behaviors of 316LN/316L SS at

different DO levels
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Fracture surface and Raman spectroscopy (316LN)
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Fracture surface and Raman spectroscopy (316L)

LCF behaviors of 316LN/316L SS at

different DO levels
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TDS analysis
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Crack propagation path characterization(316LN) 
< 5 ppb DO water
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Crack propagation path characterization (316LN)
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Crack propagation path characterization (316LN)
100 ppb DO water
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Crack propagation path characterization (316LN)
2 ppm DO water

100μm

50μm

100μm

{100}

{111}

{100}

{111}

No crystallographic feature was observed at DO levels of 50 ppb, 100 ppb,

and 2 ppm, while the crack mainly propagated along {111} planes and

sometimes along {100} planes when the DO level was < 5 ppb.

LCF behaviors of 316LN/316L SS at

different DO levels
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Crack propagation path characterization (316L)
30 cc DH & < 5 ppb DO water 50 ppb DO water
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Crack propagation path characterization (316L)
1 ppm DO water

Chapter 4: LCF behaviors of 316L SS at different DO levels and some

discussion about the effects of addition of boric acid and lithium hydroxide

Similar to 316LN, crack of specimen tested in low-DO water showed

crystallographic feature while those tested in oxygenated water did not show

such a feature. Combining with other results, it is considered that the

mechanisms for 316L were the same with those for 316LN

{100}

{111}

20 μm
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Crack initiation and propagation
< 5 ppb DO water

50, 100 ppb DO water

In the < 5 ppb DO water, more hydrogen was

absorbed into the metal. Therefore, more hydrogen-

induced decohesion occurred. As the hydrogen

usually was trapped by the dislocation, therefore

hydrogen accumulated along slip plane. Since the

main slip system of metals with fcc structure is

{111}<110>, crack mainly propagated along {111}.

H

Publication:
1. Yida Xiong, Yutaka Watanabe, Yuki Shibayama, Nicolas

Mary, Effects of 100 ppb dissolved oxygen on low-cycle

fatigue behaviors of 316LN austenitic stainless steel in

borated and lithiated high temperature water and mechanism

behind these effects, Corrosion Science (2020).

https://doi.org/10.1016/j.corsci.2020.108567

Chapter 2: LCF behaviors of 316LN SS at

different DO levels

Metallic element

H
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⚫ With regard to the mechanism of the decrease in LCF life

at DO level of 2 ppm

Strain applied
Oxide film formation

316LN

Cathodic reaction:

O2+4e-+2H2O=4OH-

Oxide film

O2

O2

O2

O2

O2

O2

O2

O2
O2

O2 O2

Oxide film rupture

316LN
Oxide film

O2

O2

O2

O2

O2

O2

O2

O2
O2

O2 O2 Rapid Oxide film

reformation due to

high corrosion

rate, leading to

Less cracks.

Locations with low stress 

concentration

More dissolution

by corrosion

attack caused by

higher corrosion

potential

Locations with high 

stress concentrationCrack initiation

Crack initiation

Chapter 2: LCF behaviors of 316LN SS at

different DO levels
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Crack propagation

316LN

Oxide filmO2 O2
O2O2

O2

Cathodic reaction:

O2+4e-+2H2O=4OH-

Mainly occurred on

inner surface or 

crack mouth (higher potential)

Higher potential gradient

O2 O2
O2

O2O2 O2

Anion
Anion

Bare metal

More metal dissolution 

(caused by higher crack tip 

potential than that in 50 ppb 

and 100 ppb DO water)

Anodic reaction: metal dissolusion

(lower potential)

Anion

More anions from bulk water (caused 

by higher potential gradient)

cation

cation cation

More cations produced by metal 

dissolution to maintain charge 

neutrality

REFERENCE:
1. Yida Xiong, Yutaka Watanabe, Yuki

Shibayama, Nicolas Mary, Xiangyu

Zhong, Low-cycle fatigue behaviors of

316LN austenitic stainless steel in

borated and lithiated high temperature

water with different levels of dissolved

oxygen, Corrosion Science 176 (2020).
DOI:
https://doi.org/10.1016/j.corsci.2020.10904
8.

Chapter 2: LCF behaviors of 316LN SS at

different DO levels
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Fatigue life & Cyclic stress response

Given the typical scatter of the LCF life in simulated PWR primary water, it is

considered that the change of DH level had no effect on the LCF life of 316LN SS.

The cyclic stress response at different DH level also did not show a big difference.
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Fracture surface
0 cc DH water 30 cc DH water

Fracture surfaces of specimens tested at different DH level did not show a big

difference. On these surfaces, striation, second crack and tertiary crack were

observed.

1000μm 1000μm 1000μm

50 cc DH water

LCF behaviors of 316LN SS at different DH

levels
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TDS analysis (180th cycle)
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Oxide film characterization
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Chapter 3: LCF behaviors of 316LN SS at

different DH levels



0

10

20

30

40

50

60

70

80

90

0 100 200 300 400
Sputtering time (min)

A
to

m
ic

 p
er

ce
n
t 

(%
)

Oxide layer (~50 min)

O

Fe

Ni

Cr

22

Oxide film characterization
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Oxide film characterization

Oxide films formed at different

DH levels showed similar Cr

2p spectrums. Combining with

the depth profiles, it is

considered the change of DH

level had no significant effect

on the oxide film composition.
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⚫ Key results:
➢ LCF behaviors of 316L/316LN at different DO levels

• The LCF lives of 316L/316LN at different DO levels were different from the data

obtained by previous studies. The LCF lives of 316L/316LN in < 5 ppb DO water

was shorter than the LCF lives in middle DO water (50 ppb or 100 ppb for 316LN

and 50 ppb for 316L) but closed to the LCF lives at high DO levels (2 ppm for

316LN, 1 ppm for 316L). The discrepancy between this study and previous studies

was probably caused by the materials used.

• When the DO added was above 5 ppb (50 ppb, 100 ppb and 2 ppm for 316LN; 50

ppb, 1 ppm for 316L), the hydrogen absorption was inhibited, which caused the

increase in the LCF lives at these DO levels. However, when the DO added was 2

ppm DO for 316LN or 1 ppm for 316L, even though the hydrogen absorption was

inhibited, the crack tip potential, potential gradient between the crack mouth and

crack tip were higher, which caused the decrease in the LCF lives at these DO level.

➢ LCF behaviors of 316LN at different DH levels
• Change of DH level did not have significant effects on the LCF life, corrosion

behaviors of 316LN SS.

• The amount of hydrogen absorbed into the 316LN slightly increased with increasing

DH level. The main source of the hydrogen absorbed into the 316LN is the

hydrogen produced by corrosion reaction, instead of the dissolved hydrogen added

intentionally.

Chapter 5: Conclusions
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⚫ Recommendations:
➢ Recommendations for the optimization of the water chemistry.

• The hydrogen absorbed into the material and the crack tip potential & potential

gradient between the crack mouth and the crack tip are considered the factors

determining the LCF lives of 316L/316LN SSs. Therefore, adding little DO(50 or

100 ppb in the present case) into the water is beneficial to the 316L/LN SS from

the point of view of the LCF, because the adding of the DO can inhibit the

hydrogen absorption. However, adding too much DO(2 ppm DO in the present

case) will be deleterious to this material as it can increase the potential

mentioned.

Chapter 5: Conclusions


