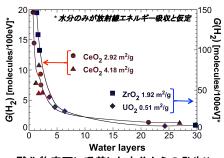

3. 固体の共存した水溶液系からの水素発生

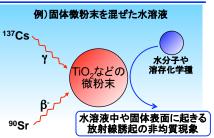
- 1)水素発生の反応促進: 固体(金属板, 金属/複合酸化物 (粉体, 繊維, コロイド)), 水と固体への放射線エネルギーの分配(吸収線量評価)
- 2) 水素発生以外の反応促進:電気・表面化学(自然電位, 接触角),金属イオンの酸化還元,有機物の分解...
- 3)水の分解生成物と固体粒子との反応:酸化チタン等の粉体,シリカナノコロイド

11

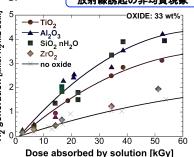
13


水溶液系でのエネルギー吸収量の評価

固体の共存した水溶液系での水素発生


報告されている水溶液系の代表例

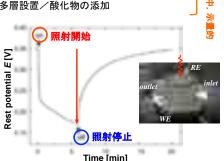
- 水分吸着した金属/複合酸化物:分子層レベルの水分(Nakashima (JAERI), LaVerne (NDRL)"他)
- 水溶液中への金属/複合酸化物の添加:酸性 水溶液,純水等(Seino (Osaka U.), Yamada (JAEA)*2他)
- 水溶液中への金属板の多層配置:金属板間の水の厚さや形状等を調節(Yoshida (Nagoya U.)他)


酸化物表面に吸着した水分からの発生*1

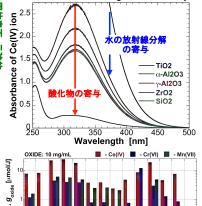
*1 J. A. LaVerne et al., J. Phys. Chem. B, <u>106</u>, 380-386 (2002)他. *2 R. Yamada et al., Int. J. Hydrogen Ener., <u>33</u>, 929-936 (2008)他.

12

14


酸化物を添加した水溶液からの発生*2

固体の共存した水溶液系での反応促進(例)


B. 金属イオンの還元促進:酸化物(粉末,繊維,コロイド...)の水溶液への添加

C. 有機物の分解促進:水溶液中への金属板の 多層設置/酸化物の添加

放射光照射(5.02 keV)によりTiO2電極表面の 自然電位が低下する様子*1

*1 K. Tamura et al., Electrochimia Acta, <u>52</u>, 6938-6942 (2007)他. *2 R. Nagaishi et al., Radiat. Phys. Chem., <u>75</u>, 1051-1054 (2006)他.

酸化物添加による金属イオンの還元促進*2

18

4. 放射性汚染水処理における水素発生

- 1)循環注水冷却システムと汚染水処理装置
- 2) 海水を含む水溶液系での水素発生収量の測定: 実験法,発生量の吸収線量依存性,海水中の放射線誘 起反応,発生収量への海水希釈・温度の影響,発生収量 の水分濃度依存性
- 3) 汚染水処理における水分濃度: 汚染水→カラム吸着 処理→廃吸着材保管, 吸着材の水分吸着
- 4)汚染水の核種分析と放射線エネルギー評価
- 5) 汚染水処理における水素発生率の評価: 処理工程, 核種吸着量, 吸着塔サイズ, 含有水分量

15

17

海水中の放射線誘起反応

水の放射線分解生成物の反応

主要な化学種の濃度と反応速度

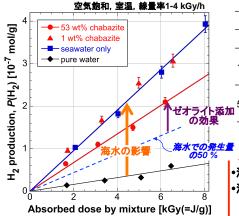
密度1.025 g/mL(24 ℃)

⊞&::o=o g:::= (= : o;				
濃度[S] *1		速度定数k (L mol ⁻¹ s ⁻¹) *2		
mol/kg	ppm	e _{aq} -	ОН	
2.5x10 ⁻³	1.5x10 ²	1.0x10 ⁶	8.5x10 ⁸	
4.7x10 ⁻¹	1.1x10 ⁴	2.0x10 ⁴		
5.3x10 ⁻²	1.3x10 ³			
2.6x10 ⁻²	2.5x10 ³	1.0x10 ⁶	5.9x10⁵	
5.5x10 ⁻¹	1.9x10 ⁴		4.3x10 ⁹	
1.0x10 ⁻²	4.0x10 ²			
1.0x10 ⁻²	4.1x10 ²			
8.4x10 ⁻⁴	6.7x10 ¹		1.1x10 ¹⁰	
5.7x10 ⁻¹		6.4x10 ⁴	2.3x10 ⁹	
イオン強度		捕捉能 <i>k</i> [S] (s-1)		
	mol/kg 2.5x10 ⁻³ 4.7x10 ⁻¹ 5.3x10 ⁻² 2.6x10 ⁻² 5.5x10 ⁻¹ 1.0x10 ⁻² 1.0x10 ⁻² 8.4x10 ⁻⁴ 5.7x10 ⁻¹	mol/kg ppm 2.5x10-3 1.5x10 ² 4.7x10-1 1.1x10 ⁴ 5.3x10-2 1.3x10 ³ 2.6x10-2 2.5x10 ³ 5.5x10-1 1.9x10 ⁴ 1.0x10-2 4.0x10 ² 1.0x10-2 4.1x10 ² 8.4x10-4 6.7x10-1 5.7x10-1	濃度[S] *1 速度定数k mol/kg ppm e _{aq} * 2.5x10-3 1.5x10 ² 1.0x10 ⁶ 4.7x10-1 1.1x10 ⁴ 2.0x10 ⁴ 5.3x10-2 1.3x10 ³ 2.6x10-2 2.5x10 ³ 1.0x10 ⁶ 5.5x10-1 1.9x10 ⁴ 1.0x10-2 4.0x10 ² 1.0x10-2 4.1x10 ² 8.4x10-4 6.7x10 ¹ 5.7x10-1 6.4x10 ⁴	

反応時間 τ = 1/k[S] \Rightarrow 0.34 ns (OH捕捉の場合)

密度1.025 g/mL(24 ℃) (1) <u>均一反応:水素の酸化反応</u>(0.1 µs以降)

H₂ + OH → H + H₂O + X⁻(ハライドイオン) > OH⁻ + X----->XO₃⁻


(2) <u>放射線分解直後の反応</u>(スパー反応) H (e_{aq}) + H (e_{aq}) \rightarrow H₂ (H₂ + 2OH) H (e_{aq}) + OH \rightarrow H₂O (OH) *再結合* OH + OH \rightarrow H₂O₂

海水中の<u>ハライドイオンによるOH捕捉</u>

1.均一反応への関与:水素の酸化反応が水中で起きなくなる.

2.スパー反応への関与:1次収量の増減の 可能性 ⇒ H₂√, H₂O(再結合)√, H₂O₂√

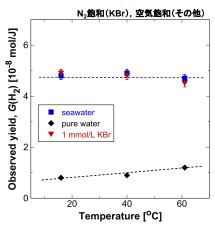
実験結果:水素発生量と吸収線量との関係

P [mol/g] = G [mol/J] × D [J/g] ゼオライト-海水系での水素の発生(例)

各種条件での水素発生収量*1

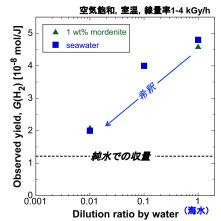
試料		収量 (10 ⁻⁸ mol/J)			
海水のみ		4.8 ± 0.3			
1 wt%添加	チャバサイト	4.9 ± 0.2			
	モルデナイト	4.4 ± 0.3			
50 wt%添加	チャバサイト	3.5 ± 0.1			
	モルデナイト	3.0 ± 0.1			

1次収量 g(H₂)=4.7×10-8 mol/J


汚染水処理での評価にあたっての留意点。

- •海水の発生収量が1次収量g(H₂)と同等.
- •海水中で水素の酸化反応は期待できない.
 - ⇒水素濃度:<u>平衡に達せず</u>に, 直線的に増加.
- ⇒発生収量:液相の深さに伴って減少しない.
- ⇒密閉系:気相に放出した水素が液相に再溶解しても、水素量の減少は期待できない。
- ⇒どのような場合でも、発生収量は水の分解の 1次収量を超えることはない。

*1 熊谷ら, 原子力学会 和文論文誌, <u>10</u>(4), pp.235-239 (2011)他.


水素発生収量の温度依存性と海水希釈効果

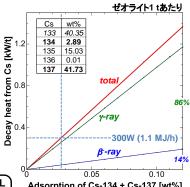
発生収量の温度依存性*1

・温度依存性:純水以外は実験誤差の範囲.→汚染水処理において、水素発生収量は室温での値を用いることができる.

発生収量に対する海水希釈効果

水溶液のみの場合:希釈とともに減少する.⇒水素の酸化反応の抑制作用が低減している.

*1 熊谷ら、原子力学会 和文論文誌、10(4)、pp.235-239 (2011)他。


^{*1} 海水組成:K.W. Bruland and M.C. Lohan, "6.02 Control of Trace Metals in Seawater", Marine Geochemistry

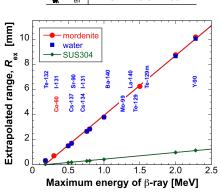
^{*2} ラジカル生成物との反応速度定数:G.V. Buxton, C.L. Greenstock, W.P. Helman and A.B. Ross, *JPC Ref. Data*, <u>17(</u>2), 513 (1988).

放射線のエネルギー評価(2号機)

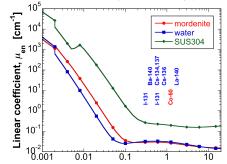
Csの吸着量と崩壊熱との関係

-処理前の汚染水中の吸収線量率 5.4 Gy/h (放射線が100%吸収と仮定) 1.5x10⁻⁶ W/mL 1.5 W/t

Adsorption of Cs-134 + Cs-137 [wt%]


吸着処理によるCsのゼオライトへの濃縮→処理後

- *1 タービン建屋溜まり水分析結果 (JAEA) よりhttp://www.tepco.co.jp/nu/fukushima-np/in
- *2 ORIGEN2用崩瘍データより; J. Katakura, H. Yanagisawa, JAERI-Data/Code 2002-021, JAERI (1994).


ゼオライトによるβ線とγ線のエネルギー吸収

β-線のエネルギー吸収*1

吸着剤 SUS 1.00 0.6-1.0 7.90 6.6 11.6 25.8 $Z_{ m eff}$ A_{off} 11.9 23.0 55.4

v線のエネルギー吸収*2 吸収率 1 – $I/I_0 = 1 - \exp(-\mu_{en}x)$

•吸収係数:水と同等で、0.4-0.6 MeV(主要核種) で2.95x10⁻², 1.25 MeV(Co-60) で2.65x10⁻² cm⁻¹

Photon energy [MeV]

• **乾燥吸着剤中の透過:**透過距離10,30,50 cm に対して, 吸収率はそれぞれ26, 59, 77%となる

*1 深度線量分布評価:Electron-Material Interaction Database (EMID) < http://www3.ocn.ne.jp/~tttabata/en

*2 質量エネルギー吸収係数: J. H. Hubbell, S. M. Seltzer, NISTIR 5632, National Institute of Standards and Technology (1995).

汚染水処理の各工程での水素発生率の評価

各工程での水素発生収量と吸収エネルギー量

分類	処理の工程	発生収量 (10 ⁻⁸ mol/J)	吸収エネルギー量
ケース1	・汚染水処理前 ・バッチ法によるCs吸着処理	4.4- <u>4.9</u>	4.1 Gy/h ^{←短寿命} 核種を除く
ケース2	・カラム法によるCs吸着処理・処理後の廃棄物の一時保管	3.0- <u>3.5</u>	300 W (1.1 MJ/h) ^{←線量率} 制限

各工程での水素発生率

 分類	評価条件	水素発生率		_
刀短	計画未計	m mol/h	m L/h *2	
ケース1	・溶存油等が存在しない ・放射線(β, γ)が100 %吸収	0.2	4.5	- ←汚染水 1 tあたり
	・Cs-134+Cs-137が0.026wt%吸着 *1 ・ <u>放射線(β, γ)が100 %吸収</u>	39	900	- ←吸着塔 1 基あたり

*2 STP(273.15 K, 101.325kPa)での値

放射線エネルギー吸収割合は、吸着塔の

によって異なる

*1 ORIGENによる解析: FPであるCs-133からCs-137までのCsが、1tのゼオライトに0.058 wt%吸着したときの重量分率

20