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▲CANDU reactors
1. Bruce A

Bruce B 
2. Pickering A

Pickering B
3. Darlington

■Uranium mines
1. Cluff Lake
2. McClean Lake
3. Midwest

4. Gentilly-1 (decom.)
Gentilly-2

5. Point Lepreau
6. NPD (decom.)

4. Cigar Lake
5. McArthur River
6. Key Lake
7. Rabbit Lake

● Research reactors
1. U of Alberta
2. Saskatchewan Research Council
3. AECL Whiteshell Labs (decom.)
4. McMaster U
5. U of Toronto (decom.)
6. Royal Military College
7. AECL Chalk River Laboratories
8. MDS Nordion (decom.)
9. Ecole Polytechnique
10. Dalhousie U

Fredericton
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NUCLEAR POWER IN CANADANUCLEAR POWER IN CANADA

• In 2007, nuclear ≡ 14.6% of Canada’s electricity
• Installed nuclear gross capacity in 2008 (all CANDUs):

Ontario
Pickering A 4×542 MW(e) (two in safe storage)
Pickering B 4×540 MW(e)
Darlington 4×934 MW(e)
Bruce A 4×805 MW(e) (two being refurbished)        
Bruce B 1×845 MW(e)

3×872 MW(e)
Québec

Gentilly-2 1×675 MW(e) (to be refurbished 2011)
New Brunswick

Point Lepreau 1×680 MW(e) (being refurbished)
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PROSPECTS FOR NEW BUILD IN CANADAPROSPECTS FOR NEW BUILD IN CANADA

Ontario
To decide on technology for two new units in 
early 2009 (ACR-1000, Areva, Westinghouse)

New Brunswick
Negotiating for new unit – Point Lepreau II –
ACR-1000 preferred

Alberta and Saskatchewan
Interested in new build
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CANDU REACTORS ABROADCANDU REACTORS ABROAD

Korea (Wolsong) 4×CANDU-6

Argentina (Embalse) 1×CANDU-6

Romania (Cernavoda) 2×CANDU-6

China (Qinshan) 2×CANDU-6

India 3×prototype 

Pakistan 1×prototype 
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CANDU REACTOR CIRCANDU REACTOR CIRCUITSCUITS
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CANDU PHTS CONDITIONSCANDU PHTS CONDITIONS

• D2O with 3-10 cc/kg dissolved D2 (H2 gas added);

• Temperature 265-310°C;

• pH (apparent) 10.2-10.8 (lithium);

• Steam quality at core outlet → 6%;

• Dissolved O2 < 5 ppb (unmeasurable – although coolant 
may be oxidising at core outlet).
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MAIN PHTS MATERIALSMAIN PHTS MATERIALS

• Fuel sheaths – Zircaloy 4
• Pressure tubes – Zr-2½%Nb
• SG tubing (CANDU 6) – Alloy 800
• SG heads – carbon steel
• Feeders – carbon steel
• Headers – carbon steel 
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CANDU REACTOR FACE CANDU REACTOR FACE 
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In 1980s, some CANDUs experienced primary system 
fouling (reactor inlet temperature rise); e.g. Point Lepreau
to May 1989
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FEEDER THINNINGFEEDER THINNING

In 1996, ultrasonic measurements of wall thickness of 
carbon-steel outlet feeders at Point Lepreau indicated 
excessive corrosion: average rates inferred from estimates 
of initial thickness.
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THINNING RELATED TO COOLANT FLOW THINNING RELATED TO COOLANT FLOW ––
FAC (FLOWFAC (FLOW--ACCELERATED CORROSION)ACCELERATED CORROSION)

FAC α V1.5
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In 1997, an outlet feeder at Point Lepreau developed a leak 
– removed and inspected.

Through-wall crack, now thought to be low-temperature 
creep, possibly exacerbated by hydrogen (deuterium) 
permeating through metal from FAC.

Several cracked feeders found since – one or two through-
wall.

Only at Point Lepreau.
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INSIDE SURFACE OF CRACKED FEEDERINSIDE SURFACE OF CRACKED FEEDER

• cracks intergranular

• medium-to-high-flow 
channels

• areas of high residual stress 
(many tight bends close to 
reactor face – “warm bent”)
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ENDEND--FITTINGS AND FEEDERSFITTINGS AND FEEDERS
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DETAILS OF REMOVED FEEDER INDICATE FACDETAILS OF REMOVED FEEDER INDICATE FAC

Scallops Effects of Cr content of steel

Low-Cr steel a consequence of specifying low-Co 
material to control activity transport.
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• All pre-Qinshan CANDUs display FAC: managed by stress analysis, 
dispositioning, removal and replacement if necessary;

• Darlington plant particularly susceptible (has thinner-wall feeders);

• Following a suggestion and early work at UNB Nuclear and later 
qualification studies, Darlington injected TiO2 as possible inhibitor into 
one channel at Unit 3 in 2004 – observed a fall in FAC of > 25%: 
promising;

• Still too many uncertainties to proceed with Ti;

• Qinshan expected to have low FAC rates because 0.3% Cr steel 
specified.
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FAC EXPERIMENTS AT UNBFAC EXPERIMENTS AT UNB

Developed probe for on-line measurement of FAC in high-
temperature water loop:

Increase in electrical resistance of thinning tube reflects FAC –
“resistance probe”.
Probes made from Point Lepreau steel: SA106 Grade B (0.019%Cr)
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Also developed wire probe – on-line measurement of 
resistance of thinning wire reflects FAC.

Experiments performed over range of conditions:
• flow rate;
• pH (LiOH);
• [Fe] saturation.
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These results and plant data suggest shear stress important (flow 
dependence high).

Scatter of results high …..
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TENTATIVE CORRELATION DETENTATIVE CORRELATION DERIVED:RIVED:

• Predicts reducing pH from 10.6 to 10.2 will decrease FAC rate 
by only ~ 12%; differences among plants indicate no consistent 
trend;

• Predicts flow-rate dependence similar to plant.

N.B. Experiments with coolant nominally saturated in [Fe] still 
produced FAC – if at a lower rate

CR = 7.65 (1 + 0.111 τ0.75) × (1 + 1.51×10-9 e1.87pH)
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FAC processes at M-O produce H2

Fe + 2H2O → Fe(OH)2 + 2H   ……………(1)

3Fe(OH)2 → Fe3O4 + 2H2O + H2 ………..(2)

Molecular hydrogen from (2) diffuses to bulk coolant.

Atomic hydrogen from (1) effuses quantitatively through metal 
– measurement reflects FAC.
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““HYDROGEN EFFUSION PROBEHYDROGEN EFFUSION PROBE”” -- HeProHePro®®

Collection cup clamped to outside of pipe – evacuated periodically –
increase in pressure monitored.

Diagram of HePro®
mounted on pipe

Typical pressure 
increase
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INDUSTRIAL APPLICATIONSINDUSTRIAL APPLICATIONS

Feeder at Point 
Lepreau

Water wall at 
Coleson-Cove oil-

fired plant
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THERMALHYDRAULIC STUDY AT UNBTHERMALHYDRAULIC STUDY AT UNB

• High velocity dependence of FAC suggests shear stress 
distribution important;

• Full-scale mock-up of feeder and end-fitting constructed from 
transparent acrylic;

• Mounted in high-flow water circuit, two-phase (air-water) ∆P 
and phase distribution studied at ~ 25°C;

• Computer simulations with cfd code FLUENT tested against 
observations.
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Hydraulic loop for testing feeder

FLOW

FLOW

FLOW

FLOW

73o

R= 95.25 mm

1802 mm

ID=54 
mm

Flexible 
Hose

Handle Plug

Air

Spacer

Weir

Sump

Compressor
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PLANT AND EXPERIMENTAL CONDITIONSPLANT AND EXPERIMENTAL CONDITIONS

CANDU-6 experiment

coolant D2O H2O

temperature (°C) 310 25

chemistry (pH25°C) 10.2 (Li) neutral

voidage 0~0.3 (steam) 0~0.5 (air)

Reliq ~4.3x106 5x105
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PREDICTABLE FLOW PATTERN IN BPREDICTABLE FLOW PATTERN IN BENDEND

0.05 voidage, Reliq ~ 4.5×105

Flow
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UNPREDICTABLE FLOWUNPREDICTABLE FLOW PATTERN IN BENDPATTERN IN BEND

0.2 voidage, Reliq ~ 4.2×105

Liquid film

Flow
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FLUENT FAFLUENT FAILS TO PREDICT PHASE ILS TO PREDICT PHASE 
DISTRIBUTION IN BENDDISTRIBUTION IN BEND

0.2 voidage, Reliq ~ 4.2×105

1.0

0.0

Air

Test section mid-plane

Recirculating flows influenced by 
upstream end-fitting
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SCALLOPINGSCALLOPING

• Effect of surface sculpting as “scallops” still unknown;

• Research at UNB Nuclear indicates scallops cannot be treated as 
conventional “sand-grain roughness” (i.e., influencing ∆P via 
Moody relations);

• Scallop shapes create different ∆P in forward and reverse flow;

• Experiments under feedwater conditions (FAC at 140°C in 
neutral water) indicate constant “scallop Reynolds number”.
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PROCESSES PROCESSES TO BE MODELLEDTO BE MODELLED
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MMODEL REFLECTS SYNERGY BETWEEN ODEL REFLECTS SYNERGY BETWEEN 
FILM DISSOLUTION AND SPALLINGFILM DISSOLUTION AND SPALLING

• Electrochemical processes affected by potential – ECP computed in parallel;
• Diffusing Fe2+ predicted to be unchanged Fe(OH)2 – straightforward Fick’s

Law applied;
• Rate constant for magnetite dissolution from literature (one reference) 

SHOULD CONTROL (<<m.t.c.);
• Same rate constant assumed for precipitation (no reference);
• Erosion treated stochastically – random-number generator used to decide 

size of particle to spall from size distribution;
• Time for particle to be loosened and removed;

• When particle disappears, film thins instantaneously by d and corrosion rate 
jumps.

CkQ
d

di Δ⋅
∝
τ

θ
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MODEL PREDICTS (MODEL PREDICTS (using CFD code to calculate using CFD code to calculate 
local shear stress)local shear stress)

• corrosion rates at different positions in feeders;

• ECP ~ -700 to -900 mV (vs. SHE);

• oxide film thicknesses (0.7 μm to 3 μm);

• growth of oxide to steady-state;

• corrosion and oxide film thickness of inlet feeders 
(saturated in dissolved iron, lower temperature).
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PREDICTED OXIDE FILM THICKNESSES IN PREDICTED OXIDE FILM THICKNESSES IN 
OUTLET FEEDERSOUTLET FEEDERS
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PREDICTED CORROSION RATE AND OXIDE PREDICTED CORROSION RATE AND OXIDE 
FILM THICKNESS FOR INLET FEEDER: FILM THICKNESS FOR INLET FEEDER: 
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MODEL FITS PLANT DATA WELLMODEL FITS PLANT DATA WELL

FAC α V1.5
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