大型放射光施設SPring-8を用いた 材料の局所ひずみ・応力解析

(公財)高輝度光科学研究センター 産業利用推進室 ○梶原堅太郎、橋本保、佐藤眞直

(株)原子力安全システム研究所

山田卓陽、寺地巧、福村卓也、有岡孝司

東京工業大学 宮澤知孝

IGSCC

Ref.: K.Arioka, T.Yamada, T.Terachi, G. Chiba, Corrosion, 2007, Vol.63, No.12, p.1114

20%CW316のSCC破面(粒界型)

強い<mark>冷間加工</mark>を加えたステンレス鋼 は、非鋭敏化状態であっても、高温 水中で<mark>粒界型</mark>のSCC進展を示す。

目的

ステンレス鋼の粒界型SCC機構解明

冷間加工による結晶粒界近傍の応力集中?

What Kind of Probe Should We Use?

- Electron Only surface
- Neutron Low brilliance
- X-ray
 Laboratory source Low brilliance Synchrotron source High brilliance High energy
 Monochromatic

Why Did We Use White X-rays?

 $2d \sin \vartheta = \lambda$

Monochromatized X-rays

Advantage of White X-rays

X-ray signals of all grains are detectable

Advantage of White X-rays 2

Grain boundary visualization

Diffraction pattern

Instrumental Layout of EXDM

(Energy Dispersive X-ray Diffraction Microscopy)

測定手順

日本原子力学会水化学部会

Distribution of Principle Stress

σ_x vs. External Stress

Quantitative evaluation

実験結果・2

SUS316 20%冷間圧延材 結晶粒界近傍の局所応力分布

まとめ

- 目的:ステンレス鋼の粒界型SCC機構解明
 粒界に応力集中があるのか実験で確認
- そのための手法開発
 - 放射光白色X線を用いた結晶粒内応力測定技術 (EXDM_Energy Dispersive X-ray Diffraction Microscopy)

kajiwara@spring8.or.jp