原子力学会 水化学部会 第12回定例研究会

PWR環境における強加エステンレス 鋼のSCC進展速度

平成23年3月7日

(株)原子力安全システム研究所

む 書書:PWR主要系統における応力腐食割れ(SCC)

- Ni基合金(600合金など)のSCC
 - □ 蒸気発生器伝熱管
 - □ 原子炉容器上蓋管台
 - □ 蒸気発生器入り口管台

□ etc

- ステンレス鋼のSCC
 - □ IASCCや酸素滞留部のSCCを除 き、最近まで報告例が無かった。

⇒割れ感受性が低いと考えられていた。

2007年に美浜発電所でステンレス鋼にも 傷が確認された。

PWRでのSCC
 ●:Ni基合金SCC報告部位
 ●ステンレス鋼の傷
 (2007年美浜2号機)

INSSでは2000年頃から、実機の割れに先行した検討を開始。

INSSでのステンレス鋼のSCC研究

■ SCC感受性評価

□ SSRT試験⇒実験室的に割れ感受性があることを確認

き裂進展速度評価

□影響因子の評価(冷間加工・応力・温度)

□ 溶接熱影響部の検討

■ メカニズム研究

□腐食機構の研究

□ クリープ機構等

登加エステンレス鋼の応力腐食割れ進展速度を計測する。 また、き裂進展速度に及ぼす以下のパラメータについて体系的なデータを取得する。

(1)冷間加工度
(2)温度
(3)応力
(4)材料種(SUS316,SUS304)
(5)加工方位
(6)鋳造ステンレス鋼
(7)溶接金属
(8)溶接熱影響部

供試材の化学成分							(重量%)	
	С	S i	Mn	Ρ	S	Ni	Cr	Мо
SUS316	0.047	0.45	1.42	0.024	0.001	11	16.45	2.07
SUS304	0.04	0.31	1.59	0.031	0.001	9.21	18.34	0.37

(熱処理:SUS316:1080℃、SUS304:1100℃、水冷)

供試材の機械的特性

	冷間 加工度 (320℃)	耐力 N/mm ² (320°C)	引張強さ N/mm² (320℃)	伸び% (320℃)	HV(1kg)
SUS31 6	5	243	458	36	184
	10	345	495	29	219
	15	495	565	15	254
	20	572	607	10	270
SUS30 4	5	270	434	38	205
	10	365	466	32	214
	15	436	503	24	243
	20	498	564	16	267

5-20% 板厚減少率

<u> </u>

試験環境:

PWR1次系模擬環境 500ppmB, 2ppmLi, 30cc-STP/kg·H₂O DH₂ 270-360°C

応力条件 K=25-40MPa√m

- 320°C以下の試験はPDM(電位差法)を適用
- 試験開始時に台形波による粒界へのき裂進展を誘導
- き裂進展速度は破面から補正

- 環境:500ppmB + 2ppmLi + DH₂: 30cc-STP/kgH₂O, 320° C
 - Institute of Nuclear Safety System, Inc.

ᇌ き裂進展速度への冷間加工(降伏応力)の影響

※1:5×10⁻⁹mm/s以下であり、信頼性が低いデータ

き裂進展速度はK値の1乗~ 2乗に比例するデータが報告 されている。(600合金のデー タと近い挙動)

B:500ppm, Li:2ppm, DH:30cc, K=25-36MPa√m

②腐食の温度依存性評価 <u>13</u>

う ふ 温度の影響に関する考察(皮膜厚さの温度依存性)

SUS316, 20%CW, 多のなたででは、 SUS316, 20%CW, 500ppmB+2ppmLi DH:30cc-STP/kg-H,0

要因は何か?

ᇌ データばらつきの原因考察:試験片の有効性

■ 平面ひずみ条件、小規模降伏条件に問題は無かったと考えられる。

ジェデータばらつきの原因考察:き裂進展速度の影響

- き裂進展速度5×10⁻⁹mm/s
 の実測値は評価値より遅く なる傾向がある。
- 一定速度(5×10⁻⁹mm/s)以
 上の進展データは比較的信
 頼性が高い。

・評価式の適用性については、再考の余地あり(加工度や応力条件により各パラ メータが変化するため、使用するデータ群により最適値が変化する)。ただし、一定 の誤差範囲内でき裂進展速度は評価可能。

・SUS316とSUS304は類似のパラメータ依存性を示し、同じ評価式を適用できる。

- PWR1次系模擬環境で、SUS316およびSUS304のき裂進展速度を 評価した。
- 体系的なデータ取得を行い、(1)冷間加工、(2)応力、(3)試験温度、(4)加工方位の影響を明らかにした。
- SUS316とSUS304について、類似のパラメータ依存性があり、進展 速度に大きな差が無いことを確認した。
- 特定条件下で適用可能なき裂進展速度の評価式(経験式)を作成した。⇒実機保全の優先順位選定や維持規格への反映が期待される。

残された課題:

- ⇒ 評価式の理論的妥当性を確認する取組が必要(メカニズム研究)
- ⇒ 進展のみならず発生の評価を進める。