

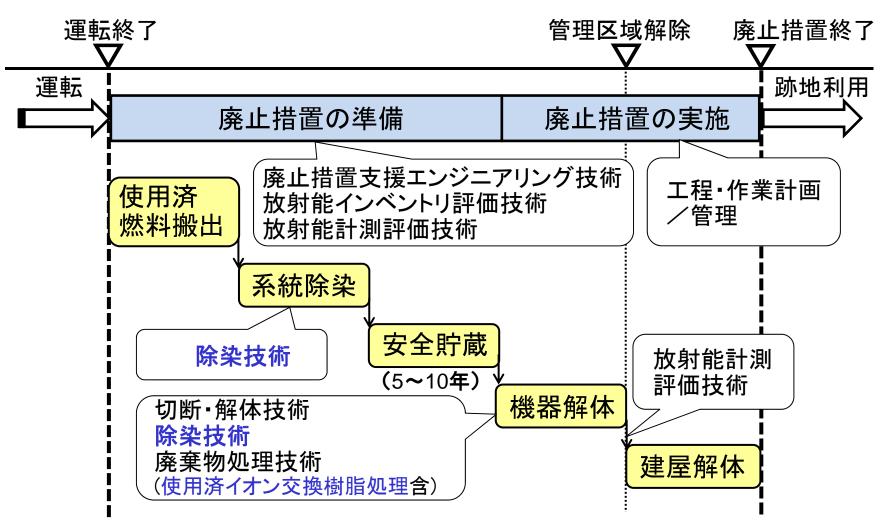
日本原子力学会「水化学部会」 第32回定例研究会

有機酸を利用した炉内構造物、 使用済イオン交換樹脂の化学除染技術

2018/03/20 (株)日立製作所

目次

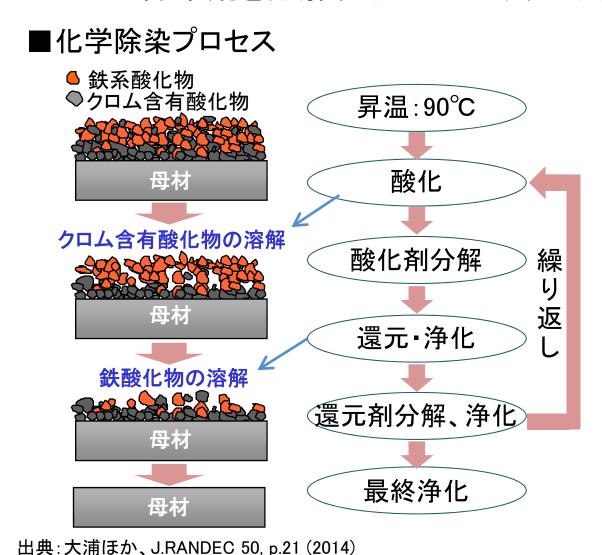
- 1. 炉内構造物・一次系配管の化学除染技術
 - 1-1. 廃止措置における化学除染の目的
 - 1-2. 化学除染技術(HOP法)の特徴
 - 1-3. HOP法の実機適用実績
- 2. 使用済イオン交換樹脂の化学除染技術
 - 2-1. 使用済イオン交換樹脂の概要
 - 2-2. 使用済イオン交換樹脂化学除染技術の特徴
 - 2-3. 模擬使用済イオン交換樹脂
 - 2-4. 要素技術の試験結果
- 3. まとめ


1. 炉内構造物・一次系配管の化学除染技術

1-1. 廃止措置における化学除染の目的

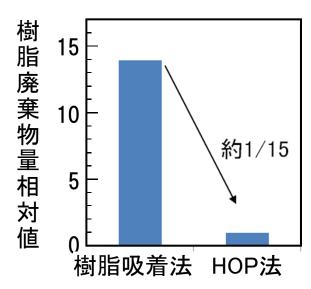
目的1:建屋、機器解体作業時の被ばく低減

目的2:解体に伴って発生する放射性廃棄物の物量低減



出典:(株)技術情報センター セミナー「原子力発電所廃止措置技術と福島第一原発各号機の 廃炉及び廃棄物処理処分に関する課題と要素技術」2015/6/12

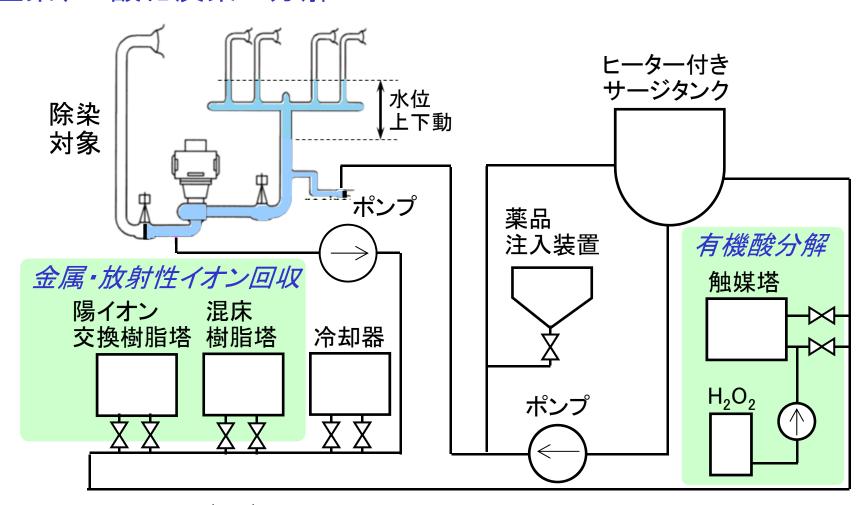
1-2. 化学除染技術(HOP法)の特徴


- 酸化と還元の除染を繰り返すことで酸化皮膜を溶解
- ・除染剤を分解することにより、二次廃棄物量を低減

■化学除染剤

- ・還元除染剤 シュウ酸+ヒドラジン
- 酸化除染剤過マンガン酸(カリウム)

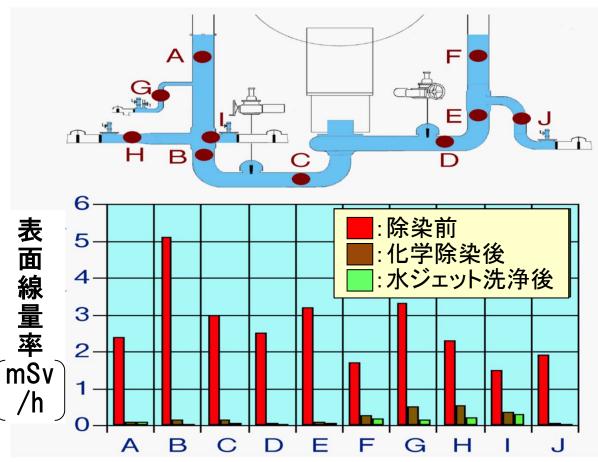
■二次廃棄物低減効果



© Hitachi, Ltd. 2018. All rights reserved.

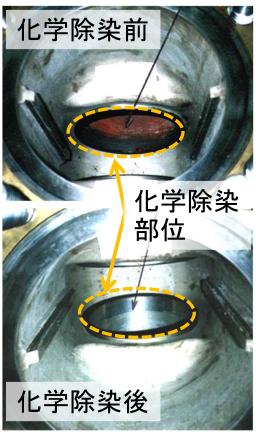
1-2. 化学除染技術(HOP法)の特徴

- ・溶解した金属、放射性イオンを陽イオン交換樹脂、混床樹脂で回収
- •還元除染に使用した有機酸は過酸化水素と混合して触媒塔で水、 窒素、二酸化炭素に分解



出典: M.Aizawa, WM2014 Conf. (2014)

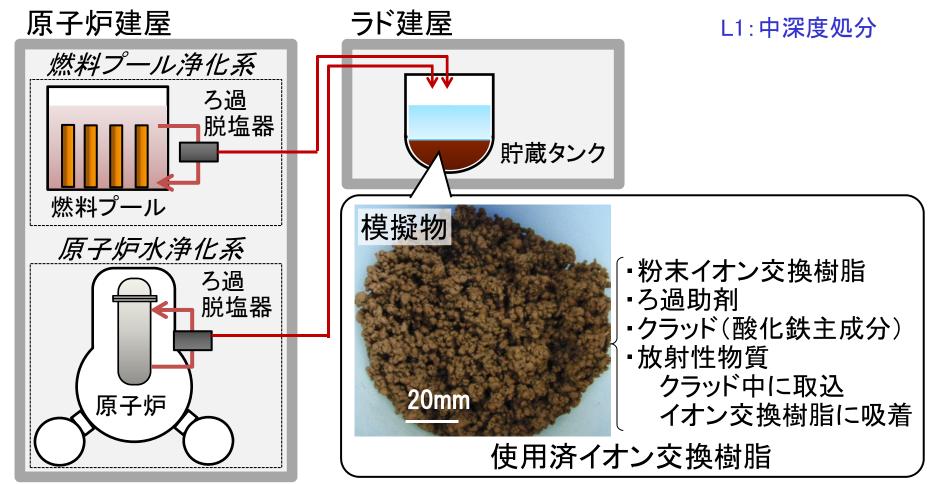
1-3. HOP法の実機適用実績



- ・HOP法化学除染によりDF10~20で配管表面線量率を低減
- ・化学除染により酸化皮膜(赤茶色)が溶解し金属表面が露出

出典:(株)技術情報センター セミナー「原子力発電所廃止措置技術と福島第一原発各号機の 廃炉及び廃棄物処理処分に関する課題と要素技術12015/6/12

DF= (除染前の放射能付着量) (除染後の放射能付着量)



2. 使用済イオン交換樹脂の化学除染技術

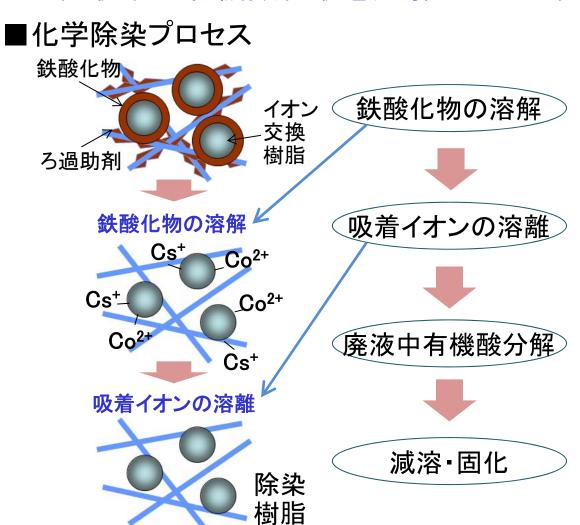
2-1. 使用済イオン交換樹脂の概要

- ・燃料プール浄化系、原子炉水浄化系で使用されたイオン交換 樹脂は高線量(L1*1対象)のためプラント内に長期貯蔵
- ・化学除染による線量低減により、廃棄物処分費用を低減

出典:住谷他、日本原子力学会 2013年 春の年会 B17

2-2. 使用済イオン交換樹脂化学除染の特徴

対象	溶解/溶出物	除去方法	放射性物質回収、 二次廃棄物減容方法
炉内構造物· 一次系配管	・放射性物質を含む 鉄、クロム酸化物	・鉄、クロム 酸化物の溶解	イオン交換樹脂に吸着有機酸利用/分解
使用済 イオン交換 樹脂	・ろ過助剤に吸着した 放射性物質を含む 鉄酸化物	・鉄酸化物の溶解	・酸化物として沈殿、 溶液の減容
	・イオン交換樹脂に 吸着した放射性イオン	・吸着イオンの溶離	•有機酸利用/分解


<開発項目>

- (1)鉄酸化物の溶解
 - → HOP法と同じシュウ酸を利用
- (2)吸着イオンの溶離
 - → 容易に分解できるギ酸とヒドラジンの混合溶液を利用
- (3)有機酸分解
 - → HOP法と同じ触媒分解法と、オゾン分解法等を利用

2-2.使用済イオン交換樹脂化学除染の特徴

- ・シュウ酸溶解、ギ酸ヒドラジン溶離によって化学除染
- ・廃液中の有機酸廃液を分解して二次廃棄物低減

■化学除染剤

- ・鉄酸化物溶解シュウ酸
- ・吸着イオン溶離 ギ酸ヒドラジン

■二次廃棄物低減

・触媒分解やオゾン分解等 により有機酸を分解

シュウ酸((COOH)₂)

- → 二酸化炭素、水 ギ酸(HCOOH)
- → 二酸化炭素、水 ヒドラジン(N₂H₄)
 - → 窒素、水

2-3. 模擬使用済イオン交換樹脂

■模擬使用済イオン交換樹脂の ■除染性能を確認した核種 組成

構成成分		割合 (Wt%)
粉末樹脂	陽イオン交換樹脂	60
	陰イオン交換樹脂	
ろ過助剤		35
鉄酸化物		5

核種	化学形態	
140	Na_2CO_3	
¹⁴ C	CH ₃ COONa	
³⁶ CI	NaCl	
⁶⁰ Co	CoCl ₂	
⁶³ Ni	NiCl ₂	
⁸⁵ Sr	SrCl ₂	
²⁴¹ Am	$Am(NO_3)_3$	
¹³⁷ Cs	CsCl	

出典:住谷他、日本原子力学会 2014年 春の年会 H34

2-4. 鉄酸化物の溶解 試験条件及び装置

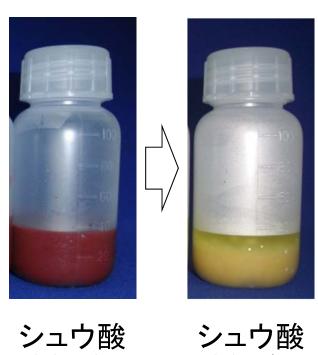
- ・模擬使用済イオン交換樹脂とシュウ酸溶液を混合し、恒温水中に 24h静置して鉄酸化物を溶解
- ■鉄酸化物の溶解条件

■試験装置

恒温槽

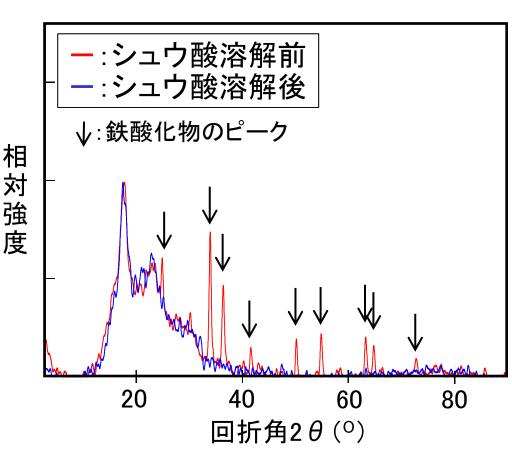
条件	値	
使用済イオン 交換樹脂量	5 g (20 ml)	
シュウ酸	0.8 mol/L	
シュウ酸 溶液量	20 ml	
温度	90 °C	
浸漬時間	24 h	

出典:住谷他、日本原子力学会 2013年 春の年会 B17


2-4. 鉄酸化物の溶解 試験結果

•90°C、0.8mol/Lシュウ酸溶液に24h静置することにより、 模擬使用済イオン交換樹脂に付着した鉄酸化物を溶解

■外観写真


■X線回折分析結果

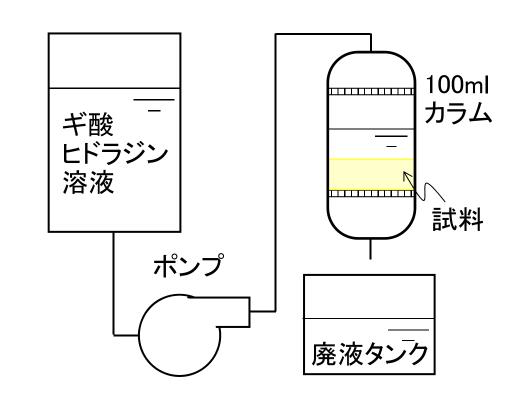
溶解前

溶解後

出典: 住谷他、日本原子力学会 2013年 春の年会 B17

© Hitachi, Ltd. 2018. All rights reserved.

2-4. 吸着イオンの溶離 試験条件及び装置

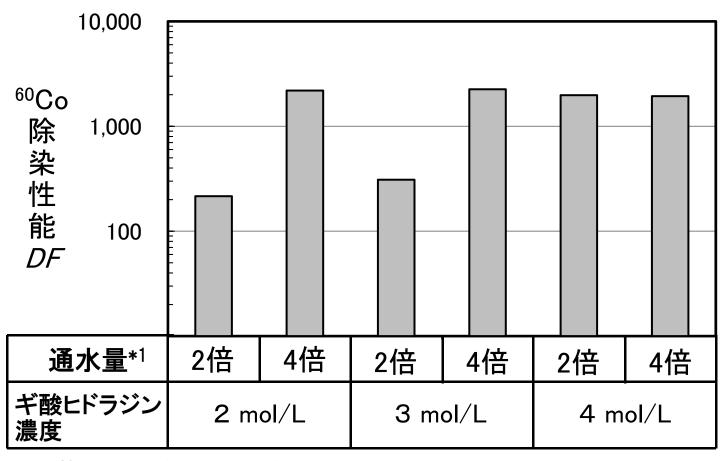


・シュウ酸溶解後の模擬使用済イオン交換樹脂をカラムに充填し 室温でギ酸ヒドラジン溶液を通水して金属、放射性イオンを溶離

■吸着イオンの溶離条件

条件値使用済イオン
交換樹脂量5 g
(20 ml)ギ酸ヒドラジン
溶液2-4 mol/L
(pH 4.7)温度室温流量40 ml/h
(SV 2/h)

■試験装置



出典:住谷他、日本原子力学会 2014年 春の年会 H34

2-4. 吸着イオンの溶離 試験結果

2-4mol/Lギ酸ヒドラジン溶離液を模擬使用済イオン交換樹脂量の 2-4倍量通水することにより60CoをDF>100で除染

*1: 模擬使用済イオン交換樹脂量に対する量

出典: 住谷他、日本原子力学会 2014年 春の年会 H34

2-4. 吸着イオンの溶離 試験結果

■60Co以外の核種についても、高いDFで除染

核種 化学形態		DF
¹⁴ C	Na ₂ CO ₃	50
170	CH₃COONa	3000
³⁶ CI	NaCl	10 ⁶
⁶⁰ Co	CoCl ₂	1000
⁶³ Ni	NiCl ₂	5000
⁸⁵ Sr	SrCl ₂	2000
²⁴¹ Am	$Am(NO_3)_3$	4000
¹³⁷ Cs	CsCl	100

ギ酸ヒドラジン濃度

:3mol/L

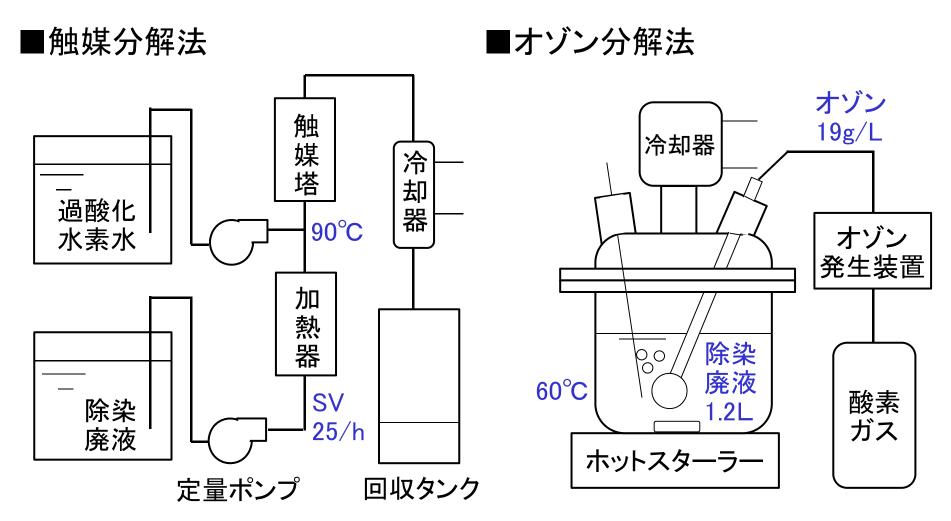
pH : 4.7

通水量:模擬イオン交換

樹脂量の4倍

 $DF = A_{ini}/A_{fin}$

DF:除染性能

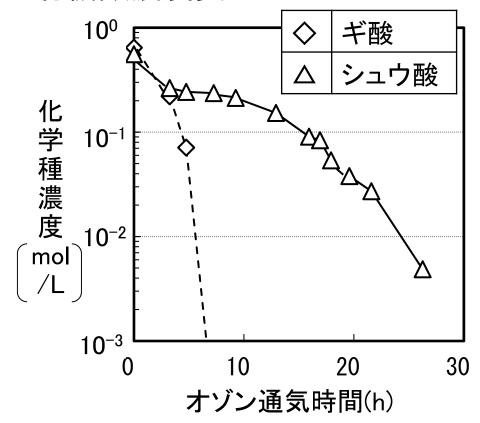

A_{ini}:初期付着放射能

A_{fin}: ギ酸ヒドラジン溶離後

の付着放射能

2-4. 廃液中有機酸分解 試験条件及び装置 HITACHI Inspire the Next

・ヒドラジンを触媒分解法で分解してから、ギ酸、シュウ酸をオゾン 分解法により分解


出典:石田他、日本原子力学会 2014年 秋の大会 G58

2-4. 廃液中有機酸分解 試験結果

・触媒分解法とオゾン分解法によりシュウ酸、ギ酸、ヒドラジンとも 99%以上分解

■有機酸濃度変化

■有機酸分解前後の外観

出典:石田他、日本原子力学会 2014年 秋の大会 G58

3. まとめ

- 1. 炉内構造物・一次系配管の化学除染技術
 - ・還元剤(シュウ酸+ヒドラジン)と酸化剤(過マンガン酸)の 繰返し除染により酸化皮膜を溶解し、DF10-20で線量率低減。
 - ・触媒分解法により二次廃棄物を低減(樹脂吸着法の約1/15)。

DF= (除染前の放射能付着量) (除染後の放射能付着量)

- 2. 使用済イオン交換樹脂の化学除染技術
 - ・シュウ酸による鉄酸化物の溶解と、ギ酸ヒドラジンによる 吸着イオンの溶離を利用した化学除染技術を開発。
 - •60Co等放射性イオンをDF100以上で除染。
 - ・触媒分解法とオゾン分解法で99%以上廃液中有機酸を分解。

